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ABSTRACT
Title of Thesis: Plasma Sheath and Screening Around a Stationary
Charged Sphere and a Rapidly Moving Charged Body
Evan Harris Walker, Doctor of Philosophy, 1964

Thesis directed by: S. F. Singer, Professor of Physics

lThe potential and charge density distributfbns are derived
quite generally for both a stationary charged sphere and a charged
body moving rapidly through a plasma.! Previous treatments were
restricted to cases where either the body's potential was small,
being at most only two or three times kT/e, or the body was
small compared to the Debye length (i.e. a << [kT/hneENo]é ).

‘We have‘caﬁcu}ated the potential and charge density as a
functiop of position about a stationary charged sphere, using both
monoenergetic and Maxwellian velocity distributions for the ions
and electrons of the ambient plasma.;;The potential decreases with
distance more slowly than in the casé of local thermodynamic equi~
librium; the density of the ions (if the body is negative, electrons
if positive) is generally much smaller than given by the barometric
fo;mula and varies in a complicated way. We also calculate the ion
and electron vol tage-current probe characteristics aﬁd the equilibrium
potential as a function of the radius of the body.\ We find the Mott-

Smith and Langmuir equations for the ion current (if the body is
negative, electrons if positive) are unsatisfactory unless the sheath
thickness is expressed as a function of the potential and radius of
the body. For a spherical body the appropriate expression for the

3

sheath thickness o is found to be o = 0.83 V. e where ¥ and Pe



are the nondimensional potential and radius for the body.

Eigenvalue solutions are obtained if the charged body neutral -
izes most of the ions and electrons that strike its surface, i.e.,
if the reflection coefficients for the surface of the body are small
Under these conditions the potential is found to vary more slowly
than r™° for small values of the potential.

For a rapidly moving body we havgwﬁeveloped a self-consistent
method for solving the screeningiproblem which does not require
iterative calculations. Equations for the solution of the screen-
ing of axially symmetric bodies are derived for plasmas in which
the thermal motion of the ions can be neglected and for plasmas
with a Maxwellian velocity distribution. We have calculated the
potential and density variation in the wake, the probe characteristics,
and the impact and electric drag characteristic curves for various
bodies.E These calculations show that there is a trough in the ion
density surrounding a highly charged body. The drag calculations
show that under certain conditions a negative drag 'is obtained if
the potential on the body is large and if the ions are neutralized

and elastically reflected at the surface,of‘the body.
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Fig.

Fig.

Fig.

2.1

2.2

2.3

FIGURE CAPTIONS

Diagram showing the parameters involved in the motion of

a screening particle. The coordinates are fixed in the
charged body. An ion with initial velocity u and impact
parameter q is shown outside the electric field and at

the point r, @ in the field with velocity v and pitch
angle Q.

¥ plotted against p, with pericritical surface indicated
and showing one curve with secondary electrons. The
curves a, b, ¢, d,'e, f, and g are representative of

the family of curves that give the potential as a function
of the radius vector, the ambient plasma being monoener-
getic. For example, assume a body with a radius of 23
Debye lengths has a potential of 15 kT/e volts ( point

A in the figure); thus the potential falls off according
to curve e. The pericritical surface would occur at B at
a distance of 35 h and at a potential (energy) of 0.105 kT.
If we include thé effects (see text for details) of second-
ary electrons and charge this sphere to a potential 20 kT,
then this will put us at point C so that the curve e'
represents the variation of ¥ vs. p. A plot of the equi-
librium poteqtial as a function of the radius is also
given for a monenergetic Hydrogen plasma.

A plot of h*/h, the ratio of the effective Debye length

to the actual value plotted against the nondimensional
distance p. These curves correspond to those of Fig.
(2.2) as indicated by the letter labels; they illustrate

v



Fig.

Fig.

Fig.

Fig.

2.4

2.5

2.6

2.7

the inadequacies of the linearized solution.
A continuation of Fig. (2,3) for smaller values of .p.
Plot of N+/No and N_/No against p for the potential
curves a, b, and ¢, corresponding to the curves in Fig.
(2.2). |
Plot of N+/No and N_/No against p for the potential curves
d, e, f, and g, corresponding to the curves in Fig. (2.2).
An illustration of the dependence of the pericritical
region on the value of the exponent n. Moving from
outside in there are the four regions: Periastron with
n <2, pericritical with n> 2, pericritical with n <2,
and again periastron with n < 2. Along a typical tra-
jectory A B C D E we have:
A the initial situation in which n <2 and
all pitch angles @ = 0 to /2 are allowed,
the periastron case
B: there is a transition from n < 2 to
n > 2. Here the allowed cone is still from
O to n/2 but is now beginning to become smaller
C: we have the pericritical case with the
allowed pitch angles from O to dﬁax’ a . < 2.
D:  the transition fromn > 2 to n < 2 occurs.
The allowed cone now begins to increase but
a . is still less than /2.
E: the trajectory reaches its point of closest
approach to the origin. Here its pitch angle

is m/2 and the allowed cone of pitch angles will

Vi



Fig.

Fig.

Fig.

Fig.

2.8

2.9

2.10

2.

be @ = O to /2. Point E marks a boundary
between the pericritical region on the out-
side and periastron region inside.
The nondimensional potential (-y) plotted against p, for
screening by a plasma with a Maxwellian velocity distri-
bution at infinity. The curves are used in the same way
as those of Fig. (2.2). The labels pg =1, po= 2, etc.
give the value of p where ¥ =-0.001, the initial point
used in the numerical calculation of the curve. Since the
ambient plasma is Maxwellian there are different pericrit-
ical surfaces for particles of different initial energy.
Thus, typical pericritical surfaces have been drawn in.
We also show the equilibrium potential curve for bodies
in a hydrogeﬁ plasma and in a singly ionized oxygen plasma.
This figure is a continuation of Fig. (2.8) to smaller val-
ues of p. |
Vv plotted against po - p. Some of the data of Fig. (2.8)
is presented in a different way here. The curves all
begin at the same point: ¢ = - 0.001, po - p = O.
n, plotted against pg - p. These curves show the vari-
ation in the ion density, starting outside the body at
a distance po from the center where the potential is
¥ = - 0.001 and moving toward the surface of the body.
The curves shown here correspond to the ¥ vs. p plots
of Figs. (2.8) and (2.10) as indicated by the value of poi

To use these curves when WS and o (the values of ¥ and

vii



Fig.

Fig.

2.12

2.13

p at the surface of the body) are given, find the appro-
priate curve in Fig. (2.8) or (2.10) and then find the
corresponding curve (from the family of curves) here.

n, - n_ plotted against pg - p. These curves show the
variation in the total space charge density starting
outside the body at a distance pg from the center where
the potential is ¥ = - 0.00l, and moving toward the sur-
face of the body. The use of the curves for specific
examples is the same as for Fig. (2.11). These curves
shown here correspond to the ¥ vs. p plots of Figs. (2.8)
and (2.10) as indicated by the value of pg.

log (1 + T+) plotted against po - p. These curves show
the variation in the nondimensional ion current

to a charged body, starting at a point pg and going
toward the body. We have plotted log (1 + T,) rather
than log T_ so that the point T_= O would appear. The
useléf these curves for specific examples is the same

as for Fig. (2.11). The curves shown here correspond to
the ¥ vs. p plots of Figs. (2.8) and (2.10) as indicated
by the value of pg. An example of the use of this figure
is given in the text.

log (1 + T+) plotted against po - p. These curves are

a continuation of the curves of Fig. (2.13) correspond-
ing to the continuation of Fig. (2.8) shown in Fig. (2.9).
The use of the curves for specific examples is the same
as for Fig. (2.13) (except that information about the y

vs. p curves is obtained from Fig. (2.9) instead of

viii



Fig.

Fig.

Fig.

2.15

2.16

2.17

Fig. (2.8)).

log (1 + |T+ - T_l) plotted against po - p for a hydrogen
plasma. These curves show the variation in the non-
dimensional net current to a charged body starting at a
point po and going toward the body. We have plotted

log (1 + IT+ - T_|) rather than log |T+ - T_I so that

the point T+ - T_ = 0 would be in the graph. This point
corresponds to the equilibrium condition of Eq. (2.60)
and can, therefore, be used with Fig. (2.8) or (2.10) to
find the equilibrium potential. The use of these curves
for specific examples is the same as for Fig. (2.11).

The curves shown here correspond to the ¥ vs. p plots of
Figs. (2.8) and (2.10).

log (1 + |T+ - T_|) plotted against po - p for a hydro-
gen plasma. These curves are a continuation

of Fig. (2.15) corresponding to the continuation of

Fig. (2.8) in Fig. (2.9). The use of the curves for
specific e*amples is the same as for Fig. (2.15)

(except that information about the ¥ vs. p curves is ob-
tained from Fig. (2.9) instead of Fig. (2.8).

A plot of the ion current-voltage characteristics obtained
from the screening calculations. Here Pys the nondimen~-
sional radius of the charged sphere, appears as the
parameter in the plot of the . nondimensional ion current
T, against the nondimensional potential. In addition
MSL (

T

. Mott=-Smith,Langmuir ion current to a negative body,

in nondimensional form, as given by Eq. (2.70)) is



Fig.

Fig.

L1

4.2

élotted for three cases: pg = 50, @ = 55; pg= 5, & = 6;
po= 10, x =10,

The initial parameters involved in the self-consistent
calculation of screening for a moving sphere. The figure
shows an arbitrary boundary surface on which the potential,
electric field and initial velocity of the test particles
are given. A typical test particle trajectory is shown
along with the surface of the negative body.

A diagram showing a method for computing trajectories if
the trajectory crosses the axis of symmetry. The first
trajectory that does not intersect the surface of the
charged body reaches the point A. By symmetry we can
reflect the trajectory at the axis. A second trajectory
is calculated to the point B. The density of ions at B
given by the second trajectory calculation is added to
that of the first. The first trajectory is then calcu-

lated to point B.

Fig. 4,3a, b A continuation of Fig. (4.2) showing two stages of the

Fig.

o

tracing out of the dénsity and electric fields in regions
where the test particles intersect. Extrapolations

of the sum of the densities for the first two particles
allow their trajectories to be calculated to B and to C,
then to be extrapolated to D and to E. A third trajectory
can then be calculated to F using the densities at D and

E obtained from the first and second trajectories.

The Gauss Flux Theorem can be used to determine the

conditions under which the electric field can be traced



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.1

5.2

5.3

6.1

6.2

out along the trajectories of ions. Here we have
broken a closed surface into four parts S;, Sz, Sa,

and S4, with components of the electric field
perpendicular to these surfaces E;, Ep, Ea, and Eg4.
Here Sz and S4 are perpendicular to the equipotential
surfaces; hence Eg = E4 = 0.

Diagram showing the parameters for the initial position
of the ion; u is the initial velocity, q the impact
parameter and rg, 6g are the polar coordinates of the
ion.

A cross section of the element of area AS. The angle
Aﬂap is the angle between two of the particle trajec-~
tory intersections with the equipotential surface. The
angle @ is the angle between the velocity vector and
the radius vector; B is the angle between the radius
vector and the normal to the equipotential surface,
Diagram illustrating the quantities used in deriving

an expression for A (where AL is finite).

The addition of the thermal velocity w to the drift
velocity u. The resulting velocity vector u' lies

in a new plane of '"symmetry'' with respect to the origin.
Diagram showing the parameters involved in ''updating'
coordinate positions of test particles. The particlé
is shown at ry, 6, before and ro, 82 after displacement.
Diagram showing the parameters used to ''update'' & from
its value at the previous (or old) position at P to

its value at the present (or new) position Q.
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Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

6.3

6.4

6.5

6.6

8.2
8.3
8.4

Diagram showing the relation between the coordinates of
a pair of test particles on an equipotential surface to
the angle B. The test particles are at ry, 8; and rp,
82. The angle B can be calculated in terms of these
coordinates.
Diagram showing the geometric relationship between the
coordinates p, 6, B; N, ® B, and A', @', O ( in the
plane B = constant).

32
The expression for 56% in the neighborhood of point 1
can be expressed in terms of OY/ON' by geometric
quantities. The figure represents a neighborhood of
point 1 in which a variation in Oy/0® is obtained
from the expression for Oy/oA'.
Diagram illustrating the geometric relationship
between N'ABQ' and pA8.
A plot of the trajectories and equipotential surfaces
computed for a hemispheric boundary surface of radius
po = 5 with an initial potential of Yo = -~ 0.001. The
ions are assumed completely cold so that kT;/U=0
(see Eq. (5.24)). The initial angle 8o of each trajec-
tory is given in radians.

As Fig. (8.1) but with pg = 10,

4

As Fig. (8.1) but with pg = 20.

[

A plot of the equidensity surfaces computed for a hemi-
spherical boundary surface of radius pg = 5 with an
initial potential ¥V = - 0.001, The ions are completely

cold so that kTi/U = 0 (see Eq. (5.24)). An equipotential
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Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

8.5
8.6
8.7

8.8
8.9

8.10

surface from Fig. (8.1) is also shown.

As Fig. (8.4) but with pg = 10.

As Fig. (8.4) but with po = 20.

A plot of the trajectories and equipotential surfaces.
Here po = 5 and Yo = - 0.001; the ions have a Maxwellian
velocity distribution with kTi/U = 0.031812. The initial
angle 0¢g of each trajectory is given in radians.

As Fig. (8.7) but with po = 10.

As Fig. (8.7) but with po = 20.

A plot of the equidensity surfaces. Here po = 5 and

Vo = - 0.001; the ions have a Maxwellian velocity
distribution with kTi/U = 0.031812. An equipotential
surface from Fig. (8.7) is also shown.

As Fig. (8.10) but with pg = 10.

As Fig. (8.10) but with pgo = 20.

A plot of the potential variation as a function of p for
several values of 8. The data comes from Fig. (8.1).

po = D, kTi/U = 0.

As Fig. (8.13) but with pg = 10.

As Fig. (8.13) but with po = 20.

A plot of the ion density variation as a function of p
for several values of . This data comes from Fig.
(8.4). po= 5, kTi/U = 0,

As Fig. (8.16) but with po = 10.

As Fig. (8.16) but with pg = 20.

A plot of ¥ vs. p for several values of 8. The data

comes from Fig. (8.7). po = 5, kTi/U = 0.031812.
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Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

8.20
8.21

8.22

8.23
8.24

9.1

9.2

9.5

As Fig. (8.19) but with po = 10.

As Fig. (8.19) but with pg = 20.

A plot of n, vs. p for several values of 8. The data
comes from Fig. (8.10). po = 5, kTi/U = 0.031812.

As Fig. (8.22) but with po = 10.

As Fig. (8.22) but with pg = 20.

The parameters involved in the calculation of the
currents to and the drag on a charged body moving
rapidly through a plasma.

A plot of the current-voltage characteristics for
bodies moving rapidly through a plasma. We have
plotted here the nondimensional quantities i p92

vs. =¥. The geometric radius pg appears as a parameter.
The data used is drawn from a limited number of calcula-
tions in which the shape of the charged body varied so
that the curves in the lower part of the graph apply
best to somewhat prolate spheroids. The first order
correction for a Maxwellian velocity distribution of

the ambient ions has been included here; we have taken
kTe/U = kTi/U = 0.031812 (corresponding to a relative
velocity U = 7 km/sec for a singly ionized oxygen plasma
with T = 1500°%). The curves should be only weakly
dependent upon the value of Te and Ti if kTi or kTe

<< U.

Plots of DTpg2 and DT'pg2 vs. (-y) for bodies moving
rapidly through a plasma. The geometric radius pg

appears as a parameter in both sets of curves. The

Xiv



curves near the bottom of the graph apply best to
somewhat prolate spheroids. These curves include
the correction for a Maxwellian velocity distribu-
tion of the ambient ions (see Eq. (5.24)); here

kTe/U = kTi/U = 0.031812. The occurrence of nega-
tive values of DT (for Py = 2, ¥ 2 4.6 and Py = 3,

¥ 2> 22) is discussed in the text.
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CHAPTER |

INTRODUCTION

The problem of the screening of bodies at rest or moving in a
collisionless plasma is necessary for several fields of investigation,
including plasma physics, upper atmosphere and space research, and
gaseous discharge research. The complete solution of this problem
allows us to calculate the ion and electron currents to a probe
embedded in a plasma; the equilibrium surface charge that a body will
acquire in the plasma; the potential and density distribution of ions
and electrons about the body, and the impact and electric field drag
that the body will experience if moving relative to the plasma.

The problem of the screening of a charged body is in many
respects similar to the problems of the neutral planetary exospherel
and the density of dust near the earth® 3 except each of these prob-
lems benefits from the fact that the gravitational potential is
everywhere given; the potential does not depend upon the density
distribution of the particles as it does in the present case.

The literature on the subject of screening and related sub-
jects is quite extensive, particularly for the case of a rapidiy
moving body. However, the solutions of the basic problems are either
unsatisfactory or severely limited in their applicability. The
limitations that beset the existing calculations are:

(a) The assumption of local thermodynamic equilibr?um. in
almost all practical screening problems, under laboratory or space
conditions, the mean free path of particles is found tc be large

compared with the Debye screening length. Such treatments are,



therefore, unsatisfactory.

(b) The use of a barometric type of formula for the density
of screening particles. Although this is equivalent to the previous
assumption, it is sometimes used even though calculations are per-
formed that take account of the motions of the particles. This
result is generally obtained because of a failure to distinguish
between periastron and pericritical orbits (see Chapter i1). A baro-
metric formula is applicable only if the body is small and the poten-
tial is small.

(c) The assumption that the ion density is constant since
the deflection of the ions, which are massive compared to the electrons,
is not significant. In the case of the screening of a stationary
body, there is no distinction to be made between the screening of a
positively charged body and a negatively charged body, if the ion
and electron temperatures are equal. Secondly, it must be noted that
as a particle with energy kT moves into a region where the potential
is greater than kT, it must Be subjected to considerable acceleration.
It will be found that for satellite velocities, considerable de-
flections do occur.

(d) The limitation of the calculation to either small poten-
‘tials or to small bodies. Since potentials on satellites may reach
values of 50 kT and since the bodies are usually many times the
Debye screening distance, these restrictions are of limited value.

(e) The a;sumption of a finite sheath. It will be shown
that the space charge region falls off much slower than previously
thohght.

Let us now review a few of the more important papers on the
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subject of the screening of bodies to see the applicability and the
limitations of these works; let us first consider the work that has
been done on the problems for stationary bodies imbedded in a plasma.

Mott-Smith and Langmuir?® considered the problem of the current
to plane, cylindrical and spherical collectors in a plasma as a
functiqn of the potential on the bodies. The primary objection to
this work is the assumption of a finite screening sheath of unknown
thickness, [If the body is very lérge cdmpared to the thickness of the
sheath, or if the body is small compafed to a Debye length and the
potential is small, the resulting error is small. However, the
sheath thickness increases as we go to larger potentials or go
to larger bodies, so that the body is large compared to the
sheath thickness only for very large bodies., There is also
no such thing as a finite sheath and, as we will see, the
fall off of the potential is very slow. The results of Mott-Smith
and Langmuir are, therefore, only satisfactory for very small
bodies (compared to the Debye screening length) having moderate
potentials.

In addition to the above difficulty with the Mott-Smith and
Langmuir expressions, the equations lead to an erroneous asymptotic
behavior for the current of attracted particles. In these equations
the current of positive ions to a negatively charged colliector (or
electrons to a positive collector) is limited by the drift of these

particles from the ambient plasma into the sheath; the maximum number

of pérticles reaching the surface of'the charged body can be no

greater than the number drifting to the outer surface of the sheath

no matter how negative the body becomes. This, of course, is not so.
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There is no finite sheath. The field expands as the potential on
the body becomes more negative (or more positive for electrons).
The solution must be obtained by a much more detailed approach
which we will give in Chapter i1.

I. B. Bernstein and |. N. Rabinowitz® have given a treatment
of the problem of the screening of stat}onary charged spheres and
infinite cylinders. Their work is severely limited by approxima-
tions employed which restrict the general ity of their approach and
by assumptions which are difficult to accept.

In their preliminary analysis of the types of orbits that will
occur for various values of the angular momentum, they assume that the

2

potential varies more slowly than r , true only if the body is small

and the potential is not large. They justify this by an a _posteriori

approach resulting in incorrect equations; these equations are then
used to justify the original assumption. The authors next conclude
that troughs of the effective radial potential energy exist so that
ions may be injected by collisions into bound orbits which, they
conclude, may result in large ion densities. Therefore, they exclude
any consideration of bodies with small radius, thus excluding the only
region where the previous assumption might hold (a;suming the poten-
tial were not too large). Actually, even with a potential that allows
for bound orbits, there is no satisfactory means by which particles
can be injected into these orbits. Since the potential about the

body provides a conservative field, injection can occur only by a
procéss that changes the energy or angular momentum of the particle

while in the field. Since the long range collisions between the

trapped ion and the plasma particles that remove the ion is much more
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important than the short range collision that can inject the ion

into a bound orbit, such orbits will be very rarely occupied. The
restriction on the size of the body, which these authors used, is
therefore, unnecessary. Furthermore their analysis of the orbit types
neglects pericritical orbits, i.e., spiral orbits which exist when

the potential varies more rapidly than r2,

Bernstein and Rabinowitz further limit the applicability of
their work by requiring that the potential energy #(a) > kTe where
a is the radius of the body, k is Boltzmann's constant and Te is
the ambient electron femperature. This restriction means that there
will be no electron current to the body, a considerable limitation.
This condition on the potential of the body is introduced to enable
the authors to ignore a formidable problem which arises if the
reflection coefficent for the charged body is zero; one finds that
the density of attracted particles n,<n_, where n_ is the density
of fhe repelled particles, over certain regions, uniess a more de-
tailed approach is employed (see Chapter ill for further information).

Finally, Bernstein and Rabinowitz treat only a monoenergetic
plasma and do not provide any information on the ion and electron
density distributioné that they obtain from their calculations.

Let us next consider a few of the papers that have dealt with
electric screening; drag, and other prablems of a rapidly moving body
in a plasma.

Singer® in treating the problem of the motion of interplanetary
dust was the first to point out the importance of photoelectrons and
the accretion of ions and electrons in the calculation of the charge

on the dust. This author also provided the earliest calculation of



the electrostatic drag on bodies in interplanetary space, making use
of the orbits of the ions in the coulomb field of the body. The cal-
culatioh includes the effects of the relative velocity on the accre-
tion and drag. Although the complex interdependence of the screening,
drag and accretion was recognized in this paper, only approximate
results were obtained.

This work was later extended and applied”? © to the calculation
of the lifetime of the West Ford needles. The effects of photo-
electrons was considered in greater detail by Singer and Walker® who
gave a self-consistent calculation of the screening and space charge
distributions produced by photoelectrons.

Jastrow and Pearsel© considered the very simple case of a
charge sheath spherically concentric about a moving charged body,
having a uniform density. This treatment neglects the fore-aft
asymmetry in ion density, the reduction in density due to the accel-
eration of ions near the charged body, the increase in density due to
focusing effects, and the initial separation of the ion and electron
constituents.

Beard and Johnsonl! have given an analysis of charging and
drag effects on satellites that includes a consideration of the
magnetic field. The effects of screening are treated differently
from Jastrow and Pearse but the treatment is equivalent; thus the
agreement between the papers is to be expected. The sheath is
taken to be thin and the potential small. The magnetic field is not
included in the calculation of the flux of either the ions or electrons
(though for large bodies the Lorentz force on the electrons will be

significant); the only magnetic field effect that is included is the



potential .gradient along the satellite perpendicular to the magnetic
field.

Beard and Johnson1?

in their paper on the !'lonospheric Limita-
tions on Attainable Satellite Potentials'' base much of their calcula-
tions on the expkession for the flux of particles to the surface

of a charged body that they derive using conservation of angular
momentum, energy, and symmetry considerations. The caiculations are
equivalent to those by Mott-Smith and Langmuir, but Beard and Johnson
do not recognize the limitations on their derivations (they obtain for

-efo/kT (8kT/nm)é). This expression is correct for

the flux (ng/4) e
the repelled constituent of the plasma but incorrect for the attracted
constituent. For the attracted constituent, the existence of peri-

critical orbits means that in general
2r o
Jf J[ cos © sin 8 d6 df # m (1 - 2efo/mv®) a®/R® . (1.1)

o [+

{For the correct expression see the derivation of Eq. (2.19) in Chap-
Itér Il or refer to E. J. Bpik's13 treatise on the motion of particles
in a field of force.) This occurs because the maximum *'pitch'’ angle
(the maximum angle between the radius vector and the velocity vector

of a test particle) Q@ at any point in the pericritical region
satisfies the relation e < /2. Thus, although angular momentum

considerations allow Beard and Johnson's expression P = a (1 - 2efo/

mva)ﬂﬁ it is easily shown that when the potential field falls off
more rapidly than r 2 no particles will satisfy this expression for
P .

m

nl4

The work of Kraus and Watso is based on linearized equations

and relates to bodies small compared to a Debye length in order to



avoid the complexities of hydrodynamic flow. Pitaevskiil® includes
a recalculation of the results of Kraus and Watson. His paper deals
primarily with the calculation of radar returns from the plasma
perturbations induced by satellites. This work includes the same
limitations that Kraus and Watson's work includes; the body is
assumed small and linearized equations are used.

S. Rand'® treated the problem of the formation of the wake
behind & cylinder with a radius much smaller than a Debye length
and behind a disc, with its surface perpendicular to the direction
of motion, having a large radius compared to the Debye length. The
potential of the bodies were limited to quite small values so that
linearizea equations could be employed.

Lundgfen and Chang'” give an approximate solution for the
screening of rapidly moving bddies which is constructed from
approximate solutions on the front of the body and in the wake
at a distance of several body diameters. The solution is appfopriate
only for bodies very large compared to the Debye length and having
a small potential (straight line trajectories are used for the cal-
culation of ion densities).

The most direct approach to the problem of the interaction
of a charged body with a plasma has been made by Davis and Harrisl®,
They used an iterative procedure in which a trial potential field
was used to calculate ion trajectories which in turn were used to
calculate a new screened potential field. This procedure was re-
peated until a self-consistent solution was obtained.

The results obtained by Davis and Harris show a rather

complex pattern for the ion density distribution in which there



exist several separate regions or pockets of reduced or enhanced
density. On the leading surface of the satellite the calculations
yield a density distribution that increases toward the axis as though
a "'singularity'" existed along the axis on the front of the body.

Such a hsinguiarity" has not been explained by the authors and does
not appear to arise from physical conditions. In view of these
facts, it is not certain that successive iterations converge toward
physically real solutions.

We wish to obtain solutions to the screening problems that
will not be subject to the limitations of the above papers. We will
obtain exact solutions to the problem of the screening of stationary
spheres embedded in a plasma and also we will obtain solutions for
the case of rapidly moving bodies which will be limited by less severe
restrictjons.

As already mentioned, the screening, accretion, density distri-
bution, charging, and drag are complicated by the fact that the poten-
tial fs not independent of these processes, but is strongly dependent
on them. The treatment that we present here provides a self-consistent
approach to all of these problems allowing a simul taneous calculation
of all these interdependent quantities. Thus we do not make calcula-
tions based on an assumed potential or space charge distribution and

we do not employ iteration calculations.



CHAPTER I}
FORMULAE FOR THE CALCULATION OF THE SCREENING

OF A STATIONARY CHARGED SPHERE

A. Plasma of monenergetic particles. The subject of the

screening of chafged bodies in a collisionless plasma is best ap-
proached by giving consideration to the simplest of the problems,
i.e., the screening of a charged sphere at rest relative to the
plasma. The.bOdy's potential is assumed to be constant in time and
not necessarily equal to the equilibrium potential (a wire to the
body or high energy electrons in the plasma may be assumed to main-
tain the potential). The problem can be approached in several ways -
principally, by the use of the Boltsmann-Vlasov equation, or by a
consideration of the particle trajectory as |imited by the conserva-
tion of energy and angular momentum. The latter treatment has the
advantage that a more complete understanding of the mechanics of
the screening process can be gained. We follow the formulation given
by E. J. Opikl3.

In the neighborhood of any point in a spherically symmetric
potential field (see Fig. (2.1)), we can express the potential en-

ergy (f =t eV, positive if attractive, negative if repulsive)

B = Ke " (2.1)
where K and n must be evaluated in that neighborhood. |t will be
convenient for our calculations to use this expression.

The conservation of angular momentum and energy may be written
in terms of the particle velocity v, at r, the impact parameter q, and

the velocity of the particle at infinity u by

-10-
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rv sin & = qu (2.2)

and

% mvZ = f + % mu® , (2.3)

where @ is the angle between v and r that will be referred to as the
"pitch' angle, and B§ is the potential energy of the particle relative
to infinity and is positive for an attractive force and negative for
a repulsive force. If we write U for the ambient anergy mu®/2 we
have on combining the angular momentum and energy equations

@
r= (1 + p/u)

sin? @ =

(2.4)

This expression can be used to distinguish between two types of
particle motions. The first type is called periastron motion. For
this type, as r decreases from infinity, there always exists a value

of r for which

g = r2 (1 + B/V) (2.5)
so that sin® a becomes unity. Under this condition the space inside
this value of r is not accessible to the particle. For a repulsive
potential this condition can always be satisfied.

If we now substitute Eq. (2.1) into Eq. (2.4) we have

2
L2 q - o2
$in® Q= —z———z=mr = q /F . (2.6)

When n < 2, the denominator F always approaches zero as r goes to
zero.

However, if n > 2, there is a point r_ for which sin® a
reaches a maximum value. This value of r is obtained by setting

the derivative of F equal to zero
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%% - 0=2+28/U+ r (dg/dr)/U , (2.7)
or
ar_+ (2 - n) Krcl'"/U = 0 (2.8)

which gives for the potential at re

g = G -2 . (2.9)

Cc

The value of re is

(n.-2) K %E
.- l:c = E| , (2.10)

where the subscripts refer to the values of the quantities at corres-
ponding value of e Thus, inside ro the particle spirals toward the

origin. Here the orbit is called pericritical. For a given value

of q, the maximum value of @ is obtained from Eq. (2.4)

(n - 2)(nc"2) /nc 2/nc

-] = g8 —< 2y,
(sin a)max q n (Kc) . (2.11)

We note that n. and KC depend on U, but on nothing else. Hence
(sin® a)max varies directly as ¢®. Evidently, the limiting condi-

tion for entry into the pericritical region is

(sin® ) pax S . (2.12)

For entry into the periastron region the right side of (2.11) must
become greater than 1 and (sinZ® Ot)max = 1, Thus Eq. (2.11) sets a
lower limit on qp for thé target radius of periastron type orbits

for the case n > 2,

> 1/n¢ _ oy ~(nc=2)/an
aza = n? (k20 (n - 2)(nes)/ane , (2.13)



or

a, = re fn/(n =2) . (2.14)

Particles satisfying Eq. (2.13) will enter along a periastron
trajectory and emerge from the field in a way similar to a hyperbolic
trajectory. Those with q < qp’ however, will always make an angle
of less than 90° with the radius and spiral inwards until the particle
hits the body or otherwise has its orbit changed. These orbits are

of the pericritical type.

'‘We are now in a position to calculate the accretion of particles
through ‘a spherical surface. The number of particles passing through

a target ring q to q + dq (see Fig. (2.1)) is
qu = 2 q dq uNg , (2.15)
where No is the ambient density. Now from Eq. (2.4) we have

qgdg=r2 (1 + @/U) sinQcos & d . (2.16)

~Thus
dAd = 21 r2 uNg (1 + B/U)sin @ cos Q@ d & . (2.17)

The integral of this for the periastron case for which all values of
a are allowed is

/2
Apa = 211 rZ uNo (1 + ﬂ/U)Jf sin @ cos @ d &

o
= mr2 uNo (1 + B/U) . (2.18)
Now for the pericritical interaction, where >0, n>2 and r < Fes
the accretion is constant, involving all the particles that have

reached the pericritical surface, Fe Thus, the accretion has the
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same value for all r < rc:

Ao ™ mr_ uNo (1 + 8_/U) : (2.19)
This result is also obtained by using the limits O to & ax in the
integration of Eq. (2.18).

The particle density can now be obtained in terms of the
potential energy from the above accretion formula. Thus, we have

the density contributed by particles moving at an angle between O

and A+ d Q
2 ] * .
dN = dA/4rrSv cos a = 5 No (1 + B/U)< sina d o . (2.20)

For periastron orbits an integration of this yields

7T/2

Qo (1 + B/U)

|-

TP 3 A .
Npa =5 QNo (1 + BD/U) \/ sin @ d a=
o}

The factor Q is the return factor. If a particle that passes through
the spherical surface at r is elastically reflected by the body so

as to return and again pass through the surface at r, the particle
orbit must be counted twice and, thus, the return factor will have

a value 2 for this particle. |If the particle is absorbed and does
not return, the value is 1 for this orbit. The return factor in

Eq. (2.21) fs an average value of thé return factor taken over all
particles. If the collision is ineleastic, a more involved calcu-
lation may become necessary. It will be found, however, that in=-
elastic collisions are not important since the reflection coef-

20, 21, 22 fFyrther-

ficient for both ions and electrons is small1%
more, although secondary electrons are produced, they ordinarily can
be neglected; a calculation that includes their effect will be made

in Section G,
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The density relation expressed in Eq. (2.21) is the same

2, 3 for the problem of gravitational

expression derived by Singer
accretion of interplanetary dust. As shown here, Eq. (2.21) is
applicable not only for the 1/r gravitational potential but for any
potential field satisfying the periastron conditions.

The expression for the density in the case of pericritical
interaction is obtained by an integration of Eq. {(2.20) over the
limits O to & o where @ . is given by Eq. (2.11):

2

q -2
Npc--;-QNo(l+b/U)é{l-[l 'rz(lﬁﬁ/u)] )I . (2.22)

Equations (2.21) and (2.22) completely define the density of
the ions and electrons anywhere in the screened electric field of
the cﬁarged body. If N_ is the density of electrons and N+ is the
density of ions (here taken to be singly ionized), then the Poissoﬁ

equation for spherical symmetry becomes

2
%;2 = hre® (N_ - N,) - %-g% . (2.23)

Equation (2.23) can be rewritten in nondimensional form by expressing
r in terms of the Debye length and B in terms of the energy U of the
plasma particles. However, since it is customary to express the
potential in terms of the temperature T of the plasma, let us write

U = %'mu2 =2 % kT and define the nondimensional potential and radius

to be

v = B/kT T2 2u/3K
p=r/h . (2.2k)
where k is the Boltzmann constant and h is the Debye screening

distance as given by
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kT
e e, (e9%)

h = Eg_:% ( MKS) . (2.25)

where e is the electronic charge and No is the ambient‘density.

| If we consider the charged body to be negative (this choice
is made for convenience only; the results hold equally-well for a
positive body), then the electron density will be given by Eq. (2.21),
since the field is repulsive to the electrons. Thus we can write,

using the definitions of Eq. (2.24),
2
=N /Moo= Q(l - 3-Iw|)é : (2.26)
Since the field is attractive to the ions, the ion density will be

given by Eq. (2.21) in the periastron region and by Eq. (2.22) in

the pericritical region. To be in the pericritical region the ex-

ponent n must be greater than 2 and r must be less than r_ as

defined by Eq. (2.10). Thus, the ion density will be

n, = N/No = '5 Q (1 +=§— M)é " (2.27)

where
1
1 when n < 2 or when (|n - 2|W/5)ﬁ§_ ]

1

(In - 2]w/3)T
RS re N AR T75R

in all other cases.
(2.28)

We can now write the Poisson equation, Eq, (2.23), as
VW= n_ - n, - 2v'/p (2.29)

where ¥' = dy/dp, ¥"' = d®y/dpZ.
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The value of n must be evaluated at each point in the
integration of Eq. (2.29) since the potential does not follow a

simple power law over a wide range of r.

B. Results of calculations for a plasma of monoenergetic

particles. The integration of Eq. (2.26) using Eqs. (2.27), (2.28)
and (2.29) for densities of the screening particles wés obtained
by numerical methods. The self-consistent field calculation pro-
ceeded from a position po, for which a small value of the potential
Vo was specified, téward the origin (rather than starting from the
surface of the charged body.

Approximating Eqs. (2.26) and (2.27) for small values of ¥

a
[=1h1%1

in Eq. (2.29) gives a linear differential equation

with a general solution of the form

w-ﬁe' W o : (2.30)

This expression can be used to obtain ygo', the initial values of y'

Vo' = - (1 + /3 po) Vo/oo . (2.31)

For a Maxwellian distribution 2 should replace Q/3; see Eq. (2.68).
(Small errors in the initial conditions will be automatically

damped out with a proper choice for the integration intergral A p.
See Chapter VII| for a discussion of this point.) This procedure
produces curves that are independent of the radius of the charged
sphere provided either that few electrons reach the surface of the
body or that the value of Q is 2. We have set the return factor for
the electrons and for the ions to be equal in this calculation. It

can be included as an additional parameter in ¥ by setting ¥ = %gi? .



-18-

Jt is this function which is plotted in the curves.

In Fig. (2.2) we have plotted log ¥ against log p, to obtain
a family of curves. As an example of theiuse of these curves, assume
a body with a radius of 23 Debye lengths has a potential of 15 kT.
This corresponds to point A and thus the potential falls off from A
along curve e. A curve connecting the pericritical surfaces is shown
along with the equilibrium potential curve for a hydrogen plasma.

The curve for the pericritical surface is approximately a straight
line satisfying ¥ p_ = 3.68.

The potenfial curves fall off much more slowly than in the case
of local thermodynamic equilibrium. This is shown in Figs. (2.3) and
(2.4) using the linearized solution for the case of local thermo-
dynamic equflibrium. Here we plot the ratio h*/h against p, where h*
is the value of the Debye length necessary in the local thermo-
dynamic equilibrium screening formula (see Eq. (2.68)) for DD to make
ﬂo (h*, r) = 8 (h, r) and QD‘ (h*, r) - o (h, r) in our calculation
for a given poiﬁt. A set of cﬁrves are given which correspond to the
set of curves in Fig. (2.2). Thus the Debye type formulation gives
a much stronger screening than that presented here. The reason for
this becoming obvious on consideration of the plots. The most inter-
esting curves of N+/No and NP/No plotted against p, as shown in
Figs. (2.5) and (2.6). In these curves the density of the ions first
rises Slightly, then falls rapidly to quite low values and finally
rises rapidly as the screening particles converge toward the origin;
Fhé density of the electrons falls rapidly to zero. For the case of
local thermodynamic equilibrium, the ion density does not drop off but

rises exponentially.
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C. Plasma of particles with a Maxwellian velocity distribution.

A derivation for the screening equations fof the case of a
charged sphere embedded in a plasma having a Maxwellian velocity
distribution has been given by E. J. Bpikla. Since certain expres-
sions must be expressed in a different form to be used in numerical
calculation§ and since additional consideration must be given to the
pericritical case, we will repeat briefly Bpik's derivation and
include these modifications.

For a plasma with a velocity distribution Egs. (2.21) and (2.22)
can be used to relate the (differential) density, dNo,.of ambient
particles in the velocity range u to u + du to their (differential)
densfty dea ar dec at a point in the potential field of the charged

body. Replacing dea and dNg for NPa and Ng in Eq. (2.21), we have

l 3
i, =5 Q1+ 8/0)F dNo : (2.32)

For the density of ambient particles with velocity in the range
U to u + du in the case of a Maxwellian velocity distribution

dNo is given by

dNo = No P dx (2.33)

where
<
P dx = 52 o™ (2.34)
i |
and
nE d 2 2
x = (m/2kT)< u ; or U=% mu® = kT x ' (2.35)

2

By integrating Eq. (2.32) over the proper limits for the case

of repulsion we obtain
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v = Lot T

3 (<0 . (2.36)

For pericritical attraction we integrate over dNa = dNr,

the 1imits differing from the case of repulsion, to obtain

' ' 2
= = Jo7 + o ( By KT (>0, n<2)

a
g
(2.37)
where the function 6(x) is given by
2
o(x) = &= f e dy : (2.38)
i

~ For the general case in which some particles are pericritical

and the rest are periastron we integrate dNa over all those particles

pe
corresponding to Eq. (2.22)
| 2
N =Lan (l+ﬂ/U)é 1 -0 -g-——gp——]é P d
pc 2 0 r< (1 + 8/V) x %
= dN_ + é- Q No [(1 + 8/U) - qu/ra’]é P, dx . (2.39)

At a given position r and with n. > 2, the ambient kinetic
energy U will determine whether a particle is pericritical or
periastron. According to Eq. (2.9) a particle is pericritical if

U< UC and periastron is U > UC where

U =2>24g . (2.10)

The total density, Np, will be obtained by an integration of

dN from O to U and dN_ from U_to =. Thus we obtain
pc c a c

g x
: Cc
‘NP -‘[ dN, + é— Q NQJ; (1 + 8/u) - qpa/rz]é‘ P, dx (2.41)
0
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where

2.
X, UC/kT . (2.42)
The integral over dNa is given by Eq. (2.37). |If we write

2 2
= X = X
Z ’ Zc c ’

v =8/kT , p=r/h (2.43)

we obtain for Np:

] 2 *
Np"E‘QNo{J;_" e o

Z 2
2 [¢ P LI
| -JF— u/; (2 + ¥ - = (z+ WC)] e dZ.} (2.44)

where qp has been replaced by Fe ﬁ'ﬁTTQJTT} ﬂc being a functiqn of
re: In a numerical integration of Poisson's equation the integral
in Eq. (2.44) must be evaluated at each point in a step-by-step
integrétion.: The integration must begin at a boundary condition
at a large distance from the charged body and proceed to the surface
of the body. We find as we proceed to smaller values of p and
higher values of ¥ that partic]eg with increasingly higher values
of U will attain bericritical trajectories. Thus it is necessary
to compile a table of Wc and Pe for successive values of UC as
they are reached in the intégration.

A complication arises if ZC, the 1imit on the integral in
Eq. (2.44), rises to a maximum value'Zm (as the integration proceeds
from the boundary condition toward the sﬁrface of the charged body)
and then drops in valué. The integral in Eq. (2.44) extends over

all pericritical trajectories. Pericritical means that all particles
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with ambient energy U will have velocity vectors confined to a
cone of angle O to ahgx’ & ax < m/2 (see Fig. (2.7)).

in order for particles with ambient energy U to become peri-
critical they must enter a region where n > 2. It does not follow,
ho&ever, that they will become periastron where n again becomes
less than 2. The upper limit on the integral in Eq. (2.44) must

be selected accordingly. Thus Z_must be chosen to correspond
. 9 c

to -the value of Z for which amax = /2. This condition yields

2 =
P (Z + ¥ /0% (2 +¥) =1 : (2.45)

The comblete set of equations for the solution of the
screening problem where the plasma has a Maxwellian velocity dis-
tribution includes Eq. (2.26) where for a negatively charged body
N_is given by N, Eq. (2.36), and N_ is given by Np, Eq. (2.4h).
Since the mass of the ions and electrons does not appear in the
basic equations, the results will be identical for a positively
charged body except for the sign. The variable Z_ is given by
Egs. (2.42) and (2.43); if Z drops from its maximum value, it is
given by Eq. (2.45).

Using Eq. (2.18) and making the changes made in the transi-
tion from Eq. (2.21) to Eq. (2.32), the differential expression for
the accretion 6f attracted pérticles with a8 Maxwellian velocity

distribﬁtion is
dA_ = mr2 No u (1 + 8/V) P, du (2.46)

where r is the radius of the spherical surface and
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Pu du = - (

du d (20)4-7)

Here it is assumed that @ is positive for an attractive field. Substituting

2 = U/KT = mu2/2kT; V = @/KkT (2.48)
we obtain
dAr = §§EI Nor2 (Z +v¥) e"Z dz . (2.49)

The total accretion is obtained by integrating (2.49) over all Z. It
must be remembered, however, that r and ¥ will become rC(Z) and vc(Z) for
all particles that are pericritical at r, V. Thus

Z
Ot ¥ < -Z

: (. r® -7 r 1
O K1 P Zz 2(9\(7 +§ (733 .
A =J Notr‘Jz (Z +¥)e ~ dZ +J r2(z)[(z v (Z)]e "dz J
c o

r m

where Z denotes pericritical energies within the range 0 < Z < z.

The first integral in Eq. (2.50) yields

e © (142 +¥); (2.51)
therefore,
A, = /%“—T No{rz(] + 2 +Y) e Zc
z
¢ -2
+ f r2(2) [2+¥_(2)] e dl} (2.52)
0

where, from Eq. (2.40),

; = (2.53)

n-2 s for n> 2
2
¢ 0

n<se .
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Expressing the accretion for the attracted particles in a nondimensional

form T+ s
A m
T N b= [ BT
2 -Zc € 2 -Z
=PP(1 +Z_+ V¥)e "+ P, (z2) [z + WC(Z)] e © dzZ (2.54)
o
Again, let us mention that V¥ is positive for an attractive field.

A comparison of Eq. (2.54) with the corresponding equation derived
by Mott~Smith and Langmuir4 shows that the two expressions are completely
different. Their results based on the assumption that the screened field
may be treated as a finite sheath,do not appear to be consistent with our
results.

13d
Opiklshas shown’ that the accretion Arf of the repelled particles,

having a Maxwe!llian velocity distribution at infinity is

. 2
Al =N u[BaT e ST (g <o) (2.55)

where m! is the mass of the.repelled particles as opposed to m for the

attracted particles and ug is given by

u, = J 3kT/m! (2.56)

Therefore, we can write A.' in terms of P = r/h and ¥ = @/KkT.

AI','_=/ 5-“';1,‘1 N P2 eV (2.57)

Multiplying A ' by /m/8TKT /Noh2 as in Eq. (2.54) we obtain

Al
- o _ 2V
e W [ - e (2.58)

This result is identical to that of Mott-Smith and Langmuir ® for a

repulsive field,
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The total current_lS to the body is

l=e N @[S oL

P = Pg

(2.59)

where e is the electronic charge and Py is the radius of the body in Debye
lengths. In order for the charge on the body to be in equilibrium with the

current from the plasma, the current to the body must zero,

= 2.ff\\
I =0 (2.60)

Substituting Eq. (2.59) for the current into Eq. (2.60) and changing the

former definition of ¥ so that it is positive when ions are repelled and

electraons are attracted we obtain

Z
1,2 - =72 3 € 2 -7Z
IR R f 0 2(2) (2 - v (2] ™,
m.
- & 02 e : (2.61)

Here we have included the ian and electron temperatures Ti’ Te in
T = Te/Ti. The value of ZC must be that appropriate for the surface of
the charged body; m, and m, are the ion and electron mass, respectively.
We have defined Ws and pS in terms of the electron temperature.

For a sufficiently small value of p_ (about 5 or less) z will be
approximately zero. For this approximation the integral in Eq. (2.61) is
zero. We obtain . for Ws therefore

v, = -1n [V Tmi/me/ (1 =7 Ws)] (2.62)

For moderately large to large values of Py We can approximate

pc ~ ps since the pericritical surface will lie close to the surface of the
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body. The integral in Eq.(2.61) becomes

z
2 J[\ ¢ pcz(Z) [z - v (2)] e 4z
[o]

S N I S D I A ) (2.65)

where Gc is the averaged value of wc. For moderately large values of Pg
(about 20) ZC is small and thus exp (-Zc) will be nearly 1. We have in

that case from Eq. (2.61)

Ws = =In [JTmi/me /(1 - TWS)] . (2.64)

i f P is large, then Zc will be large and ‘Es will be close to Ws in

value. Assuming?C = kws where 1> k32 0.5, we obtain from Eq. (2.61)

1 — “TZ,. =
7;‘[1 - T\I/C + Te <:(11fC - Wsﬂ - /mi7"me" e“’s = ( "Tk“’s)/ﬁ'ﬁ——;/"’e e“'s - O.

(2.65
Therefore, rewriting Eq. (2.65) we have

v, = -in| Tmi/me /(1 -Tkws)] . (2.66)

Thus we obtain the same or approximately the same expression for ws in each
case.

Evaluating Eq. (2.62) or (2.64) for a plasma of ionized hydrogen,
mi/me = 18%36.5 and T, = Ti’ yields y_ = - 2.504. Using Eq. (2.66) to obtain
Ws for large ps yields Ws = =2,87 where k = 0.5, We see, therefore, that the
value of ws is fairly insensitive to the value of k. For a plasma of ionized
oxygen, m./m_ = 29167 and T = T, we find using Eq. (2.62) vy = -3.61,

The results of the numerical calculation (section D} may be compared
to the above values for ws. For a hydrogen plasma in which Te = Ti the num=

erical calculations give ¥_ = 2.508 for p_ = 0.0013, vV = 2.811 for p_ = 3.83



and Ws = 3,495 for Py 83.67. In the case of an oxygen plasma the values

it

are Ws 3,669 for Pg = 0.006k, ws = 4418 for Py = 11.45 and WS = 4,856
for Py = 82.77. The above approximate equations for vy (Eqs. (2.62), (2.64),
(2.66)) appear to be valid and applicable for smaller values of Py than

anticipated.

D. Results of Calculations for a Plasma of Particles with a

Maxwellian Velocity Distribution.

—

The numerical solution of Eq. (2.26) using Egs. (2.36), (2.44), (2.k2)
and (2.45) is obtained for a plasma with a Maxwellian velocity distribution
in the same way it was obtained for a plasma of monoenergetic particles.

A self-consistent field calculation begins at the point Pe where we specify
an arbitrary but small value for ¥ = wo, the nondimensional potential. The
caiculations proceed from Po toward the origin. To start from the surface
of the body and calculate toward the edge of the sheath would require an
iterative procedure.

As in Section B of this chapter, the formula derived for the screening
under local thermodynamic equilibrium provides an approximate value for Wo'
(See Eq. (2.31)) and any error in the initiai conditions will be damped out if

Lo is sufficiently small. Again, we have used Q = 2 in our calculation but

N =

Eq. (2.31) may be used to obtain resuits for Q =
To obtain the ion and electron currents to a spherical surface of radius p,

which may be the surface of a body, or a surface concentric to the body, we

evaluated Eq. (2.54) and (2.58) at every point with m' = m, (electron mass),

m=m (proton mass), and m (oxygen mass). The evaluation of Eq. (2.54)

for the ion (in the case of a negative body) current and Eq. (2.44) for the

jon density involves an integration at each point.
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Figure (2.8) shows a logarithmic plot of ¥ versus p. This plot corres~-
ponds to Fig. (2.2) in which the results for the monoenergetic equations were
presented. The labels for these curves p = 5, 10, 20 etc. refer to the
initial value of p at whiéﬁ ¥ o=V, (¢° = 0.001 or less for every curve).
Starting at any point on one of the family of curves, we have a pair of
values p', ¥' which can be set equal to ws’ s the radius of a spherical
body and its potential. The remainder of the curve (for p > ps) gives the
relation ¥(p) for this particular situation (i.e., for 1 ps). The portion
of the curve where p < Py is inside the body and has no application for the
particular example. For a demonstration of the use of Fig. (2.8) refer to
Fig. (2.2).

For a plasma of particles having a Maxwellian velocity distribution
the ambient energy U of particies takes on all values. Thius there is no one
pericritical surface for all particles. In Fig. (2.8) we therefore illustrate
the Wp’ pp curve where pp is the radius of the pericritical surface for particles
of energy U/kT and wp is the potential for that surface.

When the ion current to a body equals the electron current to that
body, the potential on the body will be in equilibrium (Eq. (2.60)). Since
we can calculate the ion current using.Eq. (2.54) and the electron current using
Eq. (2.58) step-by-step as we calculate ¥(p) we can obtain the ¥, p curve
for Which the total current to the body is zero. The resulting curve for the
equilibrium potential we vs. p is shown in Fig. (2.8). Results for both a
hydrogen plasma and an oxygen plasma are illustrated. It will be noted that the
results are similar to those already obtained (see Eq. (2.64)).

In Fig. (2.9) we show a continuation of the logarithmic plot of ¥ and p
extended to small values of p. There are no pericritical surfaces here. The

curves are almost straight, yielding an approximate equation
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V=K't p << (2.67)
which is also to be expected from the solution of the linearized form of

+

9 = e - e‘w (using our sign convention)

vy Bl oy (2.68)
which becomes

V= Ws ps/p (2.69)
for p < {.

The equilibrium potentials for an ionized hydrogen and a singly
ionjzed oxygen plasma are shown. They are nearly constant throughout the
range of p.

In Fig. (2.10) we have plotted ¥(p) using a linear scale for p. The
coordinate po - p used gives the distance from the initial point pg of the
numerical calculations. The origin for a particular curve in Fig. (2.10),
therefore, will be at po - p = po (rather than po - p = 0). It will be seen
that for pg = 100, ¥ increases from 0.00] to 1.0 in about 15.5 Debye lengths.
This should be compared with about 5 Debye lengths using the solution to
the linearized equation (see Eq. (2.68)).

This difference arises from differences in the screening equations
derived here and the solution to the linearized screening equation using
n; = etﬂrfor the densities. The basic difference lies in the existence of
pericritical orbits, ignored in the simple et*'expression for densities.
As may be seen in Fig. (2.8), all particles with energy less than 8 kT are
pericritical on the pp = 100 curve before ¥y = 1, In addition, a distance
of seventy-five Debye lengths is required %or a six order increase (V = 1072
to 10%) in the potential, compared with 15 Debye lengths using Eq. (2;68).

An example of the use of ¥, p curves is shown in Fig. (2.10). The

position corresponding to a body of radius 10 Debye lengths and potential



-30-

energy 10 kT is shown. The dashed curve shows the subsequent drop
in the potential.

The variation in the density of the ions (or attracted particles)
for a plasma with a Maxwellian velocity distribution, Fig. (2.11),
shows the same general features as the monoenergetic case Figs. (2.5)
and (2.6). The density drops as the screening ions are accelerated
by the electric field and then increases as the ions converge toward
the origin. There still exists for some values of pg a slight increase
in density, initially followed by a decrease and then a large rise in
density (observe pg = 10 in Fig. (2.8)), but this is much less pro-
nounced than for a monoenergetic plasma.

Figure (2.12) gives the difference between the ion density and

the electron density, n, - n_, again plotted against po - p. The

+
initial rise in the curve indicates the drop in the electron density
and the rise in the ion density. For the larger distances, however,
the jon density also drops as a result of the acceleration of the ions.
For smaller initial values of pg, this dip does not occur since the

convergence of the particles toward the origin (thereby occupying a

smalier volume) is more important than their acceleration.

E. Current-voltage characteristics for a sphere embedded in

a plasma with a Maxwellian velocity distribution; comparison with

Mott-Smith and Langmuir equations. As we have seen, the ion current

(if the body is negative, electron current if positive) to any
surface concentric to the surface of the body, as well as to the body
itself can be obtained using Eq. (2.54), and the electron current
from Eq. (2.58). Figure (2.13) shows a plot of the quantity logjo

(1 + T+) versus po - p- (This function of T, is used so we can



include both large values of T+ and T+ = 0.) Let us consider how this
graph is to be used. The example in Fig. (2.10) for a body of radius

10 Debye lengths and potential energy 10 kT shows that the surface of
the body lies at po - p = 10.15. In Fig. (2.13) the point corresponding
to the surface of this body lies slightly off the pg = 20 curve as in-
dicated. The value of T+; the nondimensional current, at the surface

of the body is T = 214 for this example.

In Fig. (2.14) the same quantity, logio (1 + T+), is plotted
against po - p for small values of pp. The curves in this graph cor-
respond to the ¥, p curves in Fig. (2.9).

in Fig. (2.15) the total nondimensional current for both ions and
electrons is given. The graph is similar to Fig. (2.13). Since (T+ -T)
is initially a negative quanfity, it is necessary to take the absolute
vaiue. When the total current to the body is zero, logio (1 + |T+ - T_l)
equals zéro. The value of pg - p for which the total current is zero
can be used with Fig. (2.8) or (2.10) to obtain the équilibrium poteﬁtia].

Figure (2.16) shows log;o (1 + |T+ - T_|) plotted against
po - p for small values of pg. The curves in this graph correspond to
the ¥, p curves in Fig. (2.9).

As seen above in the examples, the use of Figs. (2.13) and (2.14)
is rather éumbersdme. It' is more useful to plot T+ vs.‘\lrS for bodies
of various fadius Pgr the subscript referring to the value of the quan-
tity at the surface of the body. This gives the current-potential probe
characteristics for probes of various sizes. Mott-Smfth and Langmuir®
(we will use MSL as an abbreviaéion) derived equations for the probe
characteristics of flat:planes;, for infinitely long cylinders, and for

spheres for both a monoenergetic and a Maxwellian velocity distribution.
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For the probe characteristics of spherical bodies their expression for
the repelled constituent of the plasma (electrons, if the body is nega-
tive) is identical with our result, Eq. (2.58). The MSL equation for
the attracted constituent (ions, for a negative body) is quite different
from our results; expressed in terms of the nondimensional current (see

Eq. (2.54)) they obtain,

T+MSL = of {l - (1 - psz/a% exp [-p52 |WS|/(a? - psa)]} (2.70)
where o is the radius of the body in terms of the Debye length, h, and
a is the nondimensional distance from the center of the body to the
outer edge of the ion sheath around the body. These authors assume

the sheath has a shafp edge and therefore, is essentially finite in
thickness. No equation is given for the thickness of this sheath,

nor is there a satisfactory criterion for estimating the sheath thick-
ness. The sheath is, however, assumed by Mott-Smith and Langmuir to

be of the order of a Debye length. If so, the exact value would not

be necessary in order to obtain accurate calculations for very small

or very large bodies. Our work does not support these assumptions in
general. However, if p, K a and AN << 1, Eq. (2.54) reduces to the

. MS
same expression as T+ L

, Eq. (2.70); namely, T, = p52 (1 + WS).

Figure (2.17) illustrates the current—Vo]tage characteristics
for a spherical probe obtained in the numerical solutions of the
screening using Eq. (2.54) for T,. The radius appears as a parameter
of the family of curves. For small values of the potential, the current
depends primarily on the geometric cross-section. As the potential
increases on the body, the current fncreases without any apparent
Iimitl

Figure (2.17) also shows three typical Mott-Smith and Langmuir
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characteristics using Eq. (2.70) for T+MSL. For Py the nondimen-

sional radius of the charged body, equal to 5 we show T+MSL using

for the sheath thickness the values | and 5, making @ = 6 and 10.

Sheaths of such thickness are commonly used and have been considered
satisfactory by many workers. This arises, however, from a mis-
understanding of the complexity of the screening problem. The space
charge about a probe is not properly represented by a finite sheath.

We find, therefore, in Fig. (2.17) that T+MSL does not resemble T+.

The Mott-Smith, Langmuir function underestimates for potentials

below 1 kT, gives too large an increase near 1 kT (rising exponentially),

MSL approaches the value OF

as an upper limit. It is the asymptotic behavior of T+MSL for large

and finally for larger values of V¥, T,

V that is particu]arly objectionable about the Mott-Smith, Langmuir
equations. The theory is misleading, for it implies that the cur-
rent approaches a maximum value which depends upon the rate at which
ions can drift across the sheath boundary, rather than upon the poten-
tial. An effort to adjust the MSL equation to fit the data of Fig.
(2{17)'would have to allow for a considerable variation in the sheath
thickness. For example, the differences exibited between our result
using Eq. (2.54) for T, and Eq. (2.70) for theAMott-Smith, Langmuir
function T+MSL are quite large; consider the case where Py = 5 and

MSL

V. = 1000. We obtain T_= 3620; for T,

S to equal 3620 the sheath

thickness must be 55 Debye lengths (& = 60). Such a large value is
not difficult to understand. Near a body charged to 1000 kT, the
high velocity of the ions would depress the density by a factor of
32. If the sheath were only 5 Debye lengths thick, the maximum

value of the ion density would be only 0.12 of the ambient density
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and would produce little screening. The field must, therefore, be
much more extensive than just a few Debye lengths. In Fig. (2.17)
an additional T+MSL curve is shown for pg = 50. This comparison

is included to show that the value of the sheath thickness does not
become less important even for relatively large bodies. It would
appear, then, that the Mott-Smith, Langmuir equations for the

probe characteristics are not valid in general for an attractive

potential.

F. An expression for the sheath ''thickness'' for calculating

current-vol tage characteristics. Let us consider the possibility

of finding a simple expression for the ''sheath thickness'' s which
can be used with the MSL equation to obtain results in agreement
with ours. Such an expression would be quite useful although not
entirely satisfactory theoretically since the idea of a finite
screening sheath is an approximation. .

The charge q, on a spherical body surrounded by a concentric

charge layer of radius O = Py + o Debye lengths given by
q, = Cs Vg kT/e

+ g
pS

hkT .
e 'S 2p + g LA (cgs units) (2.71)
S N

where CS is the capacitance of the concentric charge layer and o = s/h.
An equal and opposite charge must lie in the sheath. The density of
the ions is given by Eq. (2.28) and (2.29). If the variation in the
potential is very rapid (i.e. if in Eq. (2.29) the exponent n >> 1)

and if ¥ >> 1, then Eq. (2.28) becomes, approximately,



n (2.72)
SV I -3

where Q is the return factor. The charge in the sheath q  can be

written
T
g =3 % [lpg + )% - p %] Mo et/(Cy 1 +F V) (2.73)
where C; /1 + Ws is taken to be the averaged value of n, for the

sheath. Equating (2.71)- and (2.73), and setting o >> p we obtain for o

o= (2,6 cy)® psé wsé (2.74)
where ¥ >> 1 and Q = 2.
Bettinger and Walker®® have found that the data given in

Fig. (2.17) can be represented using the MSL equation (Eq. (2.70))

and

o= 0.83 psé wsé . (2.75)

Values of T+MSL

calculated using Eq. (2.75) are surprisingly accurate
over the entire range of Fig. (2.17).

If we use Eq. (2.75) in Eq. (2.70) and substitute into Eq.
(2.59), we can obtain an expression for the equilibrium potential
on the spherical body. |If we assume o >> pgs We obtain

,/mi/me ps§

¥ = - 1In (2.76)
S -1.,45 p%
0.69 v, (1 -e )

(where o >> p_ or 0.83 Wé o §>> 1)

If, on the other hand, we assume p . >> 0, we obtain,

<
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q,s = - In | /mi/me /(1 + 1.66 Wsé/psé)]

(where Pg >> ¢ or 0.725 pé > 1) . (2.77)

Equations (2.76) and (2.77) are in good agreement with the results of
the numerical calculations. Equations (2.76) and (2.77) show that the
equilibrium potential varies slowly with P In a hydrogen plasma
the maximum (absolute) value of Ws is about -3.76 and for an oxygen
plasma it is -5.14. For a body with P = 1000 in an oxygen plasma
where Te = Ti = 1000, 1500, or 2200°K, ﬂs will be -0.707, =-1.06, or

-1.56 e.v.

G. The effects of secondary electrons on the screening of

stationary charged bodies. Experiments performed by Hagstrum!® 20, 21,

and H. A. Fowler and H. E. Farnsworth®? have shown that as the result
of the neutralization of ions striking a metal surface, secondary
electrons will be produced with an efficiency of about 25 per cent.
These electrons have not been included in our previous calculations.
Their effect may be easily included into the calculations by intro-
ducing into the Poisson equation the term Ns/No where

8p 2 (1 +8v)
NS/NO = (2.78)

b o® [8 (v, - V)

where & is the efficiency of secondary electron production, and Ws

is the potential at the surface of the charged body (or alternatfvely
at the surface for which the secondary electron energy is zero).

In Fig. (2.2) we have plotted a curve to show the effect of
this te}m on thé screening. The effect on our previously calculated

results will be small if the surface of the body has a high potential.



CHAPTER 11l

THE SCREENING OF A CHARGED BODY WHERE THE RETURN FACTOR Q, IS VARIABLE

A. General Arguments. In experiments performed by Fowler and

Farnsworth®2, it has been found that the reflection coefficient for

iowienergy electrons striking a metallic surface is, for our purposes,
small; its value is of the order of 5%. Hagstrumi® 2% 21 has found
that ions striking a metal surface wiil be neutralized by Auger charge
exchange with an efficiency of nearly 100%5. It would therefore seem
that it is not satisfactory to set Q equai to 2 for particles which
strike the surface of the body. We will derive an expression for the
return factor for the ions, Q, and we will assume a sufficiently large
negative potential on the body to aiiow us to use a vaiue of 2 for the
electron return factor, Q_.

If Q is variable, then we can obtain the particle density by
insertiﬁg Q under the integral in Eq. (2.21). From Eq. (2.4) we obtain
for the limiting pitch angle aL separafing those particles that will be

accreted from those that will not

e I+ ¢C
o = arc sin F;r-(T—;rErﬁ ] (3.1)
where ® = |8]/U, and r. and ¢_ are the values of r and ® on the peri=

critical surface or on the surface of the charged body, whichever is

reached first by the particles. Corresponding to Eq.'(2.21), therefore,

we will have for the density

w/2
Npa ;_—No(1+¢)é'f da) sin @ dx

o
Q /2
a-‘z—NOO +Q)é Ffo Lsinada+%[aL sin a da]
=%No (1 + @)é(l + cos aL) . (3.2)

_57-
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Substituting for O from Eq. (3.1) into Eq. (3.2) we obtain

| 3 21 +o) ¥
Noa = = No (1 +0) {1+[1-—z—(-,—+55-] - (3.3)

We can define for the effective return factor for all particles,

\v]

rca(l +<bc)4}
Qpa={'*“'?<—n+‘6ﬂ

The use of two different expressions for the ionic and elec-

(3.4)

tronic return factor modifies the screening most strongly for small

values of ®. If we assume ® to be small, the Poisson equation can

be written as

o (1-9f.

O)—

o (1+02

oj—

525 (-0) + 22 (-0)

- Q) -1 (g +Q)0 (5.5)
where p = r/h. If we take p to be large, then on the pericritical
surface ¢c’ as obtained from our previous calculations, will be less
than 1. Thus the first derivative term in Eq. (3.5) will be small
(these conditions are met if p is ébout 10 or mbre) and we can neglect

it. Substituting for Q_from Eq. (3.4) in Eq. (3.5), we have the

condition
Q 1 21+ o 2 % |
'2—-5{1 +[1 - W] <p(Q +q)e (3.6)

which must be satisfied if a steady state screening equation is valid.
Substituting Q_ =2, Q_+ Q_ = 4, subtracting 1 from both sides and
squaring Eq. (3.6), we obtain,

2(' +0)
(1 - -2—(—]",,,—4,5‘ 1>(1 -29)2 . (3.7)



Since
02 << | , (3.8
Eq. (3.7) becomes
’ r3(1+0)
> 1=y (3.9)
(1 +9@ *
and therefore fhe potential must fall off more slowly than r 2., We

also have the condition that if no screening at all occurs, then

®=10_p /p (3.10)

This shows that ® must vary as

-n

® = Kr ;3 1 <n<2

(3.11)
for small values of ®. Furthermore, this result will hold in ar
modified form even for the case of local thermodynamic equilibrium.
If Q = 2, then Eq. (3.6) is always satisfied, and for the
region of small @ an integrél of the equation can be obtained of the

form

o =eP

DAX

(3.12)

It might appear that if one chooses r/rC to be large enough, the dif-
ference between Q, and Q_ could be neglected. By the substitution of
Eq. (3.4) into the Poisson equation, we can show what prevents this.

We have approximately,

32 2(1 +9)
ypz(-i?) +-y(-¢) m =0 (3.13)

for small ®. Thus, if we choose.

rca(l + Qc)
+e <9 ) (3.14)

we would obtain a potential of the form given in Eq. (3.12). However,
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rer F o and ® cannot be chosen independently. Furthermore, if Eq.
(B.Ivll») does not hold, then the condition in Eq. (3.14) cannot be
satisfied for any ® since & varies as p 2. It abpears that the po-
tential does not vary according to Eq. (3.12) over any portion of

the curve for which @ is small and Q, is given by Eq. (3.4).

B. Solution for a monoenergetic plasma. A solution to the

screening equation approximated for small values of 1/r and ® can
be obtained which will show explicitly hov;l the potential falls off
at large distances from the charged body. This equation also leads
to eigenvalue conditions on the total accretion for a monoenergetic
plasma and to eigenvalue conditions on Fe for a plasma with a Max-
wellian velocity distribution.

The equation for the periastron density in terms of p = r/h,

® = B/U (the absolute signs are removed here) is, by Eq. (3.3),

p (1 +0) %
'I‘pa--;_No‘] +¢)é{l +Fl -E%'Z-]—TWC]} - (3.15)

Let us again consider the charge on the body to be negative (for

convenience only). Substituting,
= 2 -
A= p2 (1 -9 (5.16)

into Eq. (3.15) gives for the ion density,

A %
n+=l§(l -@)é{l + Fl -Fh)] } . (3.17)

Using a similar definition for A_, with Pe - Pg and QL -> ¢S’

S referring to the surface values of the quantities, we have:

| 3 AL 2
n_=5(1+29) ]"'“'52_(—1—4776)] . (3.18)
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Substituting Eqs. (3.17) and (3.18) into Poisson's equation we obtain:

" 1 ] A- % ! - é}
o +_§¢ =§(,‘+°)%{‘+“'m)] -E(l-q>)’l’ 1+[I-p1-(—;'_3)] .

(3.19)
For large values of p and ® << | we can write for Eq. (3.19)
A+ A AL - A
2 . + i W - =
O+ S0 - o1+ —ger) = 0 . (3.20)

The solution to Eq. (3.20) can be obtained in series form by substi-
tuting
b= X a p (3.21)
n
n=|

into Eq. (3.20). This yields

% AL+ A p \ @ AL - A
L a (kn2-2n - —i——-—:ﬁ PR 5 g pTE. 2 -=0
n 8 n Lp=
=1 n=1
(3.22)
Now, since n is simply a dummy index, we can write
(-] [-
-2 - ~2( n+1
Zaop "=qp@+sz @, p2(n+1) . (3.23)
n=1 n=1 ,
If Eq. (3.23) is substituted into Eq. (3.22), we obtain
© AL+ A A, = A
-2( n+1) > + - _ + - =2
n=1
=0 . (3.24)

Therefore, we see that in order for Eq. (3.21) to be a solution of Eq.

(3.20), the value of @, must be

1
ap = - 1{A, - A) (3.25)
with a recursion equation for all other a's

A+ A

® oy = (bn® - 2n - ———@r——dan . (3.26)
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Thus the solutions are of the form

A, + A
| - - -
o= -F (A -A) e -1 (a - AN - )0

4

.s (3.27)

The solution will not be convergent unless it is terminated. (This is
apparent from the fact that for large values of n the nth term in the
series will be =(A_ - A_)hn-a[(n = 111272 in which as n => ® the
factorial term in the numerator becomes greater than the p2n in the
denominator for any given value of p; thus the terms of the series and
the series itself diverge as n approaches infinity.) If the series is
to terminate at some value of n = £ then we obtain for the condition

for the termination of the series

1 + 1 }
“E{' v g (A v )| , (3.28)
or in terms of £, we have

A+ A =168 (22 - 1) (3.29)

which gives values A_ + A_= 16, 96, 240 etc. for £ =1, 2, 3, etc.

Thus the first two values of ® will be

© = - 1 (A, - A)p™®

=4

(3.30)

2= -1 (A, - A)p 2 +2 (A - A)p

Since A+ - A_ must be positive, Eq. (3.30) verifies the earlier conten-

tion that the potential must fall off at least as slowly as p =. We

have also shown the rather remarkable fact that for this completely

classical problem, we have eigenvalue conditions on the value of A+ A_.
If we write for the current to the surface of the charged body

| then

S}

lg = emNgh® (u.A_ - uA) (3.31)
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where e is the electronic charge, No is the ambient density, u; and u,
are the ion and electron velocity at infinity, h is the Debye length.

we have from the eigenvalue condition Eq. (3.29)

u
Ig = emNoh? u [162 (22 - 1) = (1 + <HA_] . (3.32)
i

S

In order to have an equilibrium charge on the body, the net current to
the body must be zero. Thus, for a body receiving current only from
the plasma, Eq. (3.32) must be zero for equilibrium. Therefore A_ must

be
A= 162 (26 - 1)/(1 + u_ /u) : (3.33)

Since A_ is given by

-
A= p2 (1 + 0] (3.3%)
where ¢S is the value of ® on the surface of the body, the equilib-
rium value of QS is given by
. 168 (28 - 1)
°S pg (] + ue/ui) ] . (3-35)

Eq. (3.35) arises from the requirement that the charge on the body be
in equilibrium.
Returning to Eq. (3.29), which must be satisfied if a solution
is to exist, and substituting for A_ and A_ from Egs. (3.16) and (3.34) ,

we have
pi(l -oc) +p§(1+¢s)=161(2z-1) . (3.36)

For any given values of P and QS’ Pe and °c will be determined by the
detailed solution as functions of £. Thus Eqs. (3.35) and (3.36) con=
stitute a system of two equations in two unknowns giving a satisfactory

Pg» °S pair for various values of §. Thus, for a given size body,
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and
] A é’
n_= :']-’_f-an/m (1 + ¢/U)é{l + [1 - m)] }%ﬁ du (3.45)

where A+ and A_ are

ALY = 62 (1 - B_/0) (3.46)

A_(U)

e (1 - 8/V) (3.47)

where the subscript c¢ refers to the pericritical surface (or the body
surface if there is no pericritical surface), and S refers to the sur-

face of the body. We can write Eq. (3.44) and (3.45) as

“+=gg'§'{J1+J2} (3.48)
vr
n_=-2£ {|1+ 12} (3.49)
T
where
Ja =fo(l - /)2 u2e %y, (3.50)
@ A (V) 2 _
Jz ﬂu/;(l - Q)/U)é 1 - B:r%ﬁ-:figqb] uZe O‘uadu (3.51)
ha =jr—:¢,—(' + g0 ey (3.52)
o A_(U) %
P =‘é;§E7E§] + ﬂ/U)é [y - Fz—fT—;riqu] uze-auadu 5 (3.53)

Eqs. (3.50) to (3.53) become, on rearranging the quantities and inte-

grating,
|1=§e"’, v = B/KT (3.54)
Vs -w{ 4o 8 3, B }
Jp = 1 - (=)< =< (-¥)= ... ] (3.55)
T2 3/r >




=45

2= 500 - /o-?)*exp(w—pziép—i—){u-—‘*—
e Ps 3T
¥o® - v 02 2
[(—52—_';2—‘ -y o+ ]} (3.56)
S
— o) o3 w® - v o2 L
Jz = 1 - 02/0%) (- €141 - —
v DRl T
vo? - ¥ o2 8
(-?-:—p'z'—) + ]} (3.57)

where ¥ and \{rc are small and Pe is assumed constant. Substitutfng
Eqs. (3.54), (3.55), (3.56), and (3.57) into Eq. (3.48) and (3.49)

gives, dropping higher terms:

; ¥o® - ¥ 02
"+=é{ W[l__z_f";..(_\yg +(l-pi/pz)éexp [--;2—_——5%—‘:-]
L L 3
. [] - (- ) ~ = “ "'—'("‘lf
G 2 3
pZ % ¥o® - ¥ _p2
+ (1 - -1ﬂ exp.[ -1r--12"] (3.58)
VpZ - ¥ p
n = %{e‘v + (1 - p?/pe)é exp [—-2——-15——]
- PS
wp - ¥¢% 2
Ry G ) 1}~;{e"’+(1-92/p>*
3/— s
Vo2 - \VSD 3
exp [—z——pg—‘] (1 -—('W) ]} . (3.59)

Thus we obtain, on expanding the exponential terms

2+2
(2t S g2 (1 2y ) - 02 (1 42y )]
n n+—( hp v Tp= Pe Wc Ps Ws

(3.60)

Thus substituting Eq. (3.60) into Poisson's equation, we have
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2 2
Pe + Ps

e By - (EAV/eR - 2y - e 02 (1 - 2v)
-2 (1 +299)) =0 . (3.61)

We can obtain a series solution of Eq. (3.61) by substituting
bt -2n
v= I ¢ e . (3.62)

n=1

The substitution yields

2, 42
g © ps + p
2 _ -2(n+1) _ -2n _ _ e S
nf]an (4n 2n)p 2,,530‘" o 20, ~“=
- 2n, _ ] 1
- L2 - - -
(o +nf]an pm ) -~ 2 -2v) -5 (T +2¥)] 2==10
(3.63)
Since
o0 o
Za o M= p P+ ST p'2( 1) , (3.6L)
n=1 n=1

we can write Eq. (3.63) as

Z [a (42 - 2n - —E—E———) - 2an+1] i - 20, p
=1

2 4 2
1 2 2 1 pc pS
= -)I [pc (l - 2\FC) - pS (] + 2‘L‘s) ] pz = an - )_'_pz aO =0

(3.65)
Solving for Qg and @, by setting the coefficient of each power of p

equal to 0, we obtain

Qo = O (3.66)

Y

a = - .g; (02 (1 -2v) - P2 (1 +2¢)] ) (3.67)

and the recursion relation

p2 + p2
- 2 _p .2 (3.68)
an+l— an (2!’1 - N 8 . N
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If Eq. (3.62) is to be a solution, then the series must terminate
(since (3.68) leads to infinite coefficients as n —> w), Thus for

some value of n= £
p2 + pf = 82 (22 - 1) . (3.69)

Let us find the effect of Eq. (3.69) on the equilibrium
potential. From Eqs. (2.54), (2.58), and (2.60) we obtain the equa-

tion for the equilibrium potential,
Zc
2 + - -Zc 2 - -Z
ps(l Z, \ys)e +[pc(z) (z wc(z)]e dz

L
- Jmi/me p§ ed=0 . (3.70)

Assuming Pe and Wc constant, and Zc large, we have,

pi (1 - Wc) - \/mi/me p§ eS= 0 . (3.71)

Therefore, substituting Eq. (3.71) into Eq. (3.69) gives,

p§ Jmi/me
¥s = ""{ } (3.72)

(0 +v) 182(22 - 1) - p§

Equation (3.72) shows that 8£(2f - 1) = pg, if Ws is to be negative,
It is possible that Eq. (3.72) leads to unusually large poten-

tials in some cases. |If Zc is assumed small with Pe and wc constant

in Eq. (3.70) we obtain

Jmi/me
Ws = - ln{‘ } (3.73)

1 -V + ;Cws -V, 84(24 - 1)/E§]

for the potential. Since Zc[\lfs - Wc 84(2L - I)/p?] is small, Eq. (3.73)

is essentially the same as Eq. (2.62).
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there may exist no steady state equilibrium potential at all.

Let us find the approximate value of ¢s. If the pericritical

surfave lies within pg, then p_ —> pg, o —> o and Eq. (3.36) becomes

o2 =8¢ (22 - 1) . (3.37)
Substitution of Eq. (3.37) into (3.35) yields; approximately,

____EL____)
1+ ue/ui

.= ~(1 - (3'38)

S

Since ue >> us, QS ~ -1. Because of the requirement that the peri-
critical surface lie within Pgs Eq. (3.38) is probably invalid for Py
much greater than 10. (Since the value of p_ = 10 is not known, it
cannot be definitely stated that Eq. (3.38) serves as more than a
demonstration of the use of Eqs. (3.35) and (3.36) in obtaining a

solution for ¢S.)

If we rewrite Pe as

pi = p3 (1 +x) (3.39)
and substitute into Eq. (3.36), we obtain

02 =8 (20 - 1)/01 + 2402 - (1 +x)0 /2] . (3.40)
Substituting (3.40) into (3.35) gives

o= -1+ (1 -2)(1 +x)/2u . (3.41)

Since x is small for large p and u_ >> Ui Eq. (3.41) yields o, = - 1.
it should be noted that Eqs. (3.35), (3.38) and (3.41) apply to a mono-
energetic plasma and give quite different results for @S from those one
should expect for a plasma with a Maxwellian velocity distribution.
These results apply to a monoenergetic plasma. We will see

presently that for the case of a plasma with a Maxwellian velocity
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distribution. The screening equations will lead to eigenvalue solutions
and eigen value conditions on the parameters. It should be noted, how-
ever, that a monoenergetic plasma is not physically unrealistic. It is
possible to imagine éxperimental arrangements for producing a monoener-
getic plasma. In any case, the eigenvalue conditions definitely do not
arise from physically unrealizable assumptions concerning -the velocity

distribution of the constituents.

C. Solution for a plasma with a Maxwellian velocity distribution.

We can extend the above treatment to the case of a plasma with a Max-
wellian velocity distribution. Equation (3.15) gives the expression

for the equilibrium ion density for a monoenergetic plasma. The compar-
able expression for the case of a Maxweliian velocity distribution can
be obtained by integrating the product of Eq. (3 15) and the appropriate
expression for the velocity distribution dn/du over all velocities

allowable.

o0

pZ (140 _/U) %
=—f (I+ﬂ/U)é{l+[l -55——(”—0;“-)-] }%&du . (3.42)

(o]

The appropriate distribution function dn/du is

i k¥ o -
du /T (3.43)

where o = m/2kT, which gives the fraction of the ions that will have
initial speeds in the range u to u+ du.
For a negatively charged body, the expressions for the ion and

electron densities will be:

L A é
n+=é—fo(l - ﬂ/U)é{l + [ -EETL_—E/—U‘)] }gﬁ du . (3.44)




CHAPTER IV
THE SELF-CONSISTENT FIELD CALCULATION FOR A

RAPIDLY MOVING AXIALLY SYMMETRIC CHARGED BODY

A. Discussion of the Approach. In manycases in which we wish

to know the nature of the screening of a charged body that is embedded
in a plasma, the situation is complicated by a motion of the body rel-
ative to the plasma. If the motion is slow, i.e., if the drift veloc~
ity relative to the plasma is small compared to the thermal velocity
of the ions, then the problem can be treated as a perturbation on
the spherically symmetric case in which the charged body is at rest.
If, however, the velocity of the body, relative to the plasma, is
large, then the problem becomes far more complicated and a quite dif-
ferent approach is required. We will consider this more complicated
problem in which we take the velocity of the charged body, relative to
the plasma, to be much greater than the thermal velocity of the ions.
We assume that we have an axially symmetric negatively charged
body moving relative to the plasma with a velocity that is great
compared to the thermal velocity of the ions, but is small compared
to the thermal velocity of the electrons. We will consider only the
case of a negatively charged body. The approach that we use is capa-
ble of providing the equipotential surfaces, the electric field, the

density of the jons and electrons at every point, the current to the

charged body, the trajectories of the ions, the structure of the plasma

wake, and the electric drag on the body.
The accretion and density formulae obtained in Chapter !} de-
pend heavily upon the spherical symmetry of the problem. This sym-

metry makes it possible to integrate over @ and q to obtain the

~50=~
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particle density without having to incorporate a functional dependence
of @ and q on the angles 8 and # (in the spherical coordinates r, 6,
g) .

For the calculation of the screening of a moving body, it will
be necessary to follow individual particle orbits in order fo calculate
the space charge density. The density of this space charge will then
be used to calculate the potential in the neighborhood of the particle's
position, and then the potential is used to continue the orbit calcu-
lations.

If the mean velocity of the ions is much smaller than the
velocity of the charged body, then in the coordinate system at rest
with the charged body, we may consider the incident ions to be
moving along the axis of symmetry. The fact that the ions do
have random thermal motions may be introduced as a later refine-
ment.

We are, therefore, able to begin our calculations with a test
particle (or as we will find to be necessary, a group of test particles)
moving with its velocity vector initially parallel to the axis of sym=
metry. The calculations proceed from an assumed boundary surface on
the front side on the body (for example, a hemispherical equipotential
surface, ¥ =-0.001) as showﬁ in Fig. (4.1). The electric field is
determined approximately by using Eq. (2.30) as in Chapter Il. We
first calculate an incremental step in the particle's trajectory,
then the resulting density at the new position on the trzjectory,

and the new values of the potential and the electric fields.



This procedure is repeated at each step along the trajectory. The
result is that we are able to use this technique to ''trace out' the
electric field and the equipotential surfaces. The method is
strajghtforward enough as long as the successive ion trajectories
do not intersect. When the trajectories of the test particles do
intersect, a more complicated procedure must be used as we will see
later.

With this objective in mind, we will derive the expressions
necessary for following the particle trajectories and for solving
the Poisson equation.

it will be_found necessary to employ several particles lying
in a neighborhood, following their trajectories in order to obtain
all the information needed in the trajectory calculations. That is
to say, if we were to try to solve for the trajectory of a single
particle, using only the information derivable from following
one trajectory, then we would discover that we could not calculate
the density of ions in the neighborhood of this particle nor would we
have the necessary information regarding the direction and variation
of the electric field in the neighborhood of the test particle. In
order to obtain this information, we will follow four test particles
simul taneously. A comparison of the positions of test particles 1 and
2 or of test particles 3 and 4 can be used to obtain the ion density;
the comparison also yields the direction of the electric field. The
comparison of the electric field vector obtained for particles 1 and
2 with that for particles 3 and 4 will yield the rate of change of
the electric field vector in the neighborhood of the particles
(later we will refer to the angle B, which is the angle between the

normal to the equipotential surface and the radius vector, and the
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derivative of B with respect to @ along an equipotential surface).
This information could be obtained using only three test particles
in the group; however, since the separation between these particles
cannot be reduced below certain practical limits, the accuracy that
can be achieved using only three particles might not be sufficient.

in the approach to the problem that is made here, the boundary
conditions are placed on a surface outside the body, rather than being
specified for the surface of the charged body. The shape of the charged
body is obtained as a result of the calculations. If the surface of
the body is a conductor, then the surface of the body will be an equi-
potential surface. The charged body will merely be disignated as one
of the equipotential surfaces. If there exists a pericritical surface,
so that the ions are accreted toward the origin and do not reemerge,
then any equipotential surface lying completely inside the pericritical
surface can be considered as the surface of a charged bo&y. At the
surface of a body the ions are assumed to be neutral ized and those
equipotential surfaces shown inside the body are superfluous.

If, on the other hand, the equipotential surface lies outside
this pericritical surface, then a different procedure is required to

take care of those trajectories that emerge from the equipotential

surface corresponding to the body. First of all, the trajectories are
terminated where they first encounter the equipotential surface
corresponding to the body. Secondly, since these particles will

not reemerge from the body, there will be a space devoid of space
charge and of trace trajectories. The equipotentials in this

space must be recalculated using :72 ¥ = 0. The boundary condi-

tions must be taken from the trajectories that bound the empty space.
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One can also use trajectories to trace out the field if the ion and
electron densities are set to zero.

if we desire a solution for a body of a particular shape, the
shape and position of the boundary surface must be selected through
a process of trial and error or, if sufficient data has been com-
piled, by the extrapolation of previous results to obtain a satis-
factory boundary surface.

0f course there exists the possibility that a particular
boundary cannot lead to a real solution in certain areas of the
space. For example, if we assume the boundary surface to be at
a potential of Yo, and hemispheric with a radius of curvature po,
it may be found impossible to obtain self-consistent traces inside
a certain region, say, with a radius py. This does not mean that
the technique fails, but rather that no charged body of any given
shape/lying entirely with a radius p; can give rise to a hemi-
spherical equipotential surface of radius po and potential ¥o with
all the other conditions of streaming velocity, etc. also applying.

If the trajectory of a test particle crosses the axis of sym-
metry, a new difficulty arises. We then have the problem of test
particle trajectories crossing each others path requiring us to sum the
density contribution from both groups of particles in order to find
the total charge density at that point and the resulting electric
fields. The problem is actually only one of computational complica-
tions, so that we need merely indicate the computational procedure to
use whenever we wish to solve the screening problem in a region in
which the test particle trajectories intersect.

In Fig. (4.2), we have drawn the trajectory of the first
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particle to cross the axis of symmetry at point A. The particle
is assumed reflected here and its trajectory is extended to point B.
A second trajectory is computed starting from the initial boundary
surface and is extended to point B also. Here the sum of the den-
sities of the first and second trajectories can be obtained. Further-
more, the sum can be extrapolated for the neighborhood of the point B.
The trajectory from A to B can now be accurately computed. In Fig.
(4.3a), we see that the second trajectory has been extended to point
C using the extrapolated value of the total charge density obtained
at point B. In Fig. (4.3b), a third trajectory is being computed
beginning at the initial boundary surface and intersecting at the
approximate positions E and D. At D, a new extrapolation expression
is obtained and used to correctly compute the segment of the first
particles trajectory from B to D. At E an extrapolation can be
made to yield the segments D E and C E. The third trajectory can
then be extended to F and reflected. This procedure can be continued
until the entire space is traced out.

Since the technique would require considerable computation,
it is at present beyond our scope. For this reason, it will not be
employed in this paper. This should not be taken to mean that the
author does not consider the results in such regions to be important.
Such results, when they are obtained, will be quite valuable to the
understanding of the structure of the wake of a charged body moving

in a plasma.

B. Validity of the approach. We must consider the validity of

the solution to a screening problem that is obtained by the above

approach in which test particles are used to ''trace out'' the electric
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and potential fields. It might appear that a solution could not

be obtained by a procedure in which a particle (or as will actually be
thevcase, a group of particles) is followed along its path tracing out
the field without any consideration of what is going on anywhere else
in the field except in the immediate neighborhood of the particle.

To answer the question, let us consider the uniqueness theorem
for electrostatics. This theorem states essentially that the boundary
conditions in an electrostatics problem will uniquely determine the
solution within the boundary, if the charge distribution within the
boundary is known. Let us consider two closed equipotential surfaces,
one inside the other, separated by a very small distance. If the
boundary conditions are specified on the outer surface, then the
distance to the inner equipotential surface at any point can be
determined simply from a knowledge of the charge density between the
two surfaces. To do this, we need know nothing of the distribution
of the charge within the inner surface. This fact is obvious either
from the uniqueness theorem or, more simply, from the Faraday 'lce
Pail'' experiments.

These considerations show that it is quite satisfactory to

begin on a boundary surface and calculate with the knowledge of the

particle trajectories from one surface to the next until the entire

region has been calculated down to the surface of the charged body.

However, are we justified or is it possible to do this piecemeal,

by tracing out a small region at a time along particle trajectories?
To answer this question, consider the Gauss Flux Theorem for

the closed surface shown in Fig. (L.4). We can write

fEdS ’f Elds +f EgdS +f Esds +f E4ds = q. ()4..])
S S1 Sz 33 Sa €o



If Sg and S4 are perpendicular to the equipotential surfaces

Sy and Sz, Ez and E4 will be zero. This will allow us to write for
Eq. (4.1)
f E2dS = -2- -f E,dS (4.2)
S2 ° Sy

where E; is specified on the boundary surface S;. We see that if we
know the shape of the initial boundary surface S;, and the value of
the electric field on that surface, and if we perform our calculations
from one equipotential surface to the next, the values of the electric
field on a neighboring equipotential surface can be calculated from

a knowledge of the space charge between these two surfaces. This
process can be performed from one equipotential surface to the next

so as to trace out a section of the electric field without a knowledge
of the rest of the field other than that it must be consistent every-
where with the traced out section. The conditions specified here will
be met in the procedure and the equations used to solve screening

problems.



CHAPTER V
THE DENSITY OF IONS AND ELECTRONS IN AN AXIALLY

SYMMETRIC POTENTIAL FIELD FOR A RAPIDLY MOVING CHARGED BODY

A. The ion density N, Assume that we have a negatively

charged body moving rapidly through a plasma in which the relative
velocity u between the body and the plasma is large compared to
the velocity of the ions, but small compared to the velocity of the
electrons. In a frame of reference at rest with respect to the charged
body, the ions may be considered to be approaching the body with a
velocity u parallel to the axis of symmetry and with impact parameter
q (see Fig. (5.1)).

The accretion of particles through a ring element of area

2mqAq in a plane perpendicular to the axis of symmetry, M, is

M = 2 mqnq No U (5.1)
where No is the ambient density of ions. Now, at any later moment,
the density N of these ions can be specified if we know the flux J

of the particles at that time and if we know their velocity v:

N= J/v . (5.2)
The flux can be specified in terms of the component of the ring sur-
face element AS through which these particles pass at some later
position in space which is perpendicular to fhe velocity vector of
the particles at that position in space. We can then write for the

flux J:

J = AM/AS . (5.3)
In order to evaluate AS let us consider Fig. (5.2) which shows

the section of the equipotential surface which test particles coming
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from Aq cross. The projection of this surface perpendicular to the

velocity vector of the particles is

AS =2 Tr sin 8 &M s (5.4)
(r, 8) being the coordinates of the particles. The angle & is the
angle between the radius vector r and the velocity vector v. The
angle B is the angle between the radius vector and the normal to the
equipotential surface (B is positive in the counterclock-wise direc-
tion). The angle MOz is the angle between two particle trajectory
intersections with the equipotential surface. The value of Af in
the limit as ABzp approaches zero is

& o= rp8p (1 + tan® B)é'cos (@ +B) = raBzp cos (& + B)/cos B

‘ (5.5)
Thus, substituting this expression for Al into Eq. (5.4) for AS we

have

AS = 2 Tr2 sin @ ABzp cos (& + B)/cos B . (5.6)
Thus we have for the flux J on substituting Eq. (5.6) and Eq. (5.1)

into Eq. (5.3)

gAq Ng U cos B

)=z 08z, sin 8 cos (o + B) (5.7
and for the ion density N_we will have
N+=SAANocosﬁ ‘ (5.8

r2 (1 + ﬂ/U)éiéﬁgp sin 8 cos (O + B)

since v/u= (1 + ﬂ/U)é. In terms of the angle subtended by Aq we

have
sin 8g = q/rg 3 (5.9

cos 8 A8p = Aq/l"o . (5'10)
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Writing ABo = (AB2p) o to emphasize the definition of the quantity, we

have on substituting from Eqs..(5.9) and (5.10) into Eq. (:5.8):

N, ro® sin 8g cos 8o (AB2p)o cos B
— n, = : é’ . (5.'])
No r2 (1 + B/U)° sin © (282p) cos (a + B)

Particular care must be exercised in the use of Eq. (5.11)..if ¢ + B
approaches w/2.

Since we intend to use numerical methods to evaluate n, and
since in that evaluation A8zp will be finite, the derivation of Af
which resulted in Eq. (5.5) is not satisfactory everywhere. We
derive below the correct expression which takes into account the
finite value of ABzp, the angular separation between the test
particles.

Consider Fig. (5.3). Here we show a finite ABzp, which gives
the angular séparation between the test particles A and B. Since Af

is finite, the variations in 8 between A and B must be included. For

a differential element of Af, dAf, we have that

dAf = dS |cos [(@ + B) - n8.]] . (5.12)

Now we see that
ds = r d(a0)) (1 + tan® B2 = 4(28.)/|cos Bl , (5.13)

and thus on integrating d& from 0 to Af, and d(ABi) from O to A8zp,

we have

A92p
o -fo lco; 5 cos [(a +8B) - A9i1| d(28,) . (5.1k)

Thus A¢ becomes

n o= |

cos B [sin (@ +B) - sin (3 +B- 26zp)]| . (5.15)
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However, if @ + B > /2, then particle A of Fig. (5.3) will be on the

opposite side of B. We will then have to use the expression

AQE P
r
cos B

N = cos [(a + B) + AGi]l d(28,) (5.16)

|
o]

to replace Eq. (5.14); thus, when @ + B > 7/2

o= | [sin (& + B) = sin (O + B + AB2p) ]| . (5.7)

cos B
Using Eqs. (5.15) and (5.17) for AL, n, becomes

ro® sin 8g cos 8g cos B (AB2p)g

ré (1 + b/Uygrsin'Q [sin (& + B) - sin (O + B;TABZP)]
| (5.18)

n, =

“with (=) fora+pg< /2

| (+) fora+B>mn/2

As the angle © approaches 0 or T the densitf of ions, according to
Eq. (5.18) approaches infiqity. This is the result of our neglect

of the thermalvvelocities of the screening particles which in reality
will prevent the ions from converging toward the axis of symmetry;
i.e. although 8 may reachle = T along some of the ion trajectories,
most of the ions will only approach T,

Let us now obtain a correction to Eq. (5.18) (specifically sin 8)
which will introduce the thermal velocities as an approximate cor=-
rection to the density calculations in the neighborhood of the
axis. Consider a typical ion that is approaching the charged body
but is still "outside' the field of the body. Its velocity relative
to the charged body will be the vectorial sum ofu (the vector
velocity between the plasma and the charged body) and w, the thermal
velocity of the ion. In Fig. (5.4 we show the sum of w and u = uz

(where u is the scalar magnitude of u and z is the unit vector along
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the axis of symmetry of the coordinate system. The three unit vectors
for this coordinate system are z, r, g.) The components of w are also
shown.

Now the fact that n, is not infinite for trajectories crossing
the z axis is due only to Wg the 8 component of the thermal veloci~
ties of the ions. The components L and W, contribute only higher
order corrections to the density célculations. But how is it that the
Yo component of the ion velocity results in a reduction in the density
near the axis? Consider again Fig. (5.4) and assume that the thermal
velocities are small compared to u (i.e., kT << U). In order to cal-
culate n_ to first order we may set u + w=u + we_g:=;g!. With a
velocity of u' the axis of symmetry for the particle will be shifted
from the coordinate axis z. A particle whose thermal velocity in the
© direction is Wo will pass no closer to the z coordinate axis than

pwe/u (where w, << u). Thus no particle with wg > u(m™ - 8) can reach

e
a coordinate point p, 8 (8 = O being on the forward side of the
body) . We, therefore, obtain the first order correction to the den-
sity equations by excluding all such particles.

If kT << U, the density contribution of each particle reaching
P, @ will be the same to first order. The density will be reduced in

proportion to the reduction in the number of particles reaching p, 6.

The density is thus reduced by a factor F.

F=1 -S(WG') (5']9)

where 5(we') is the fraction of particles with Yo greater than we'

w,' = u(m - 9 . (5.20)

e

If we assume the ambient ions to have a Maxwellian velocity
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distribution, then the function 8(w ) is given by

__9

N o 2kT 2 ® -x2
5(w ) %f dweaﬁr_ " e dx (5.21)
where
x! = 2"‘? wel . (5.22)
F becomes, using Eq. (5.21) in (5.19)
= 2
F =1 -'2'— f ex dx . (5'25)
o Vo
2kT ]
Using Eq. (5.20) in (5.23) we have
® 2
Fal -2 Jf e dx . (5.24)

jF— vU/KT (7-8)
Using the conditions of Eq. (5.24), the expression for n , Eq. (5.18),

will become

n

- |ro sin 8o cos Bg cos B (ABzp) g |
+

r2 (1 + ﬂ/U)é [sin (@ +B) - sin (& + B F ABzp)] sin 9

(-]

-
ho-2 e dx ] (5.25)
- YU/KT (m-8)
with ( =) fora+ B < n/2
(+) fora+pB>q/2
‘"are 8o = O for any of the test particles, "+, (5.14) and

(5.25) must be supplemented by the expression

n = ro? (159212)0ir . (5.26)
2 (1 + 8/U)% nezp
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This results from the observation that for a particle initjally moving

along the axis of symmetry, for which B must be zero, @ must always

be zero as well. Thus, the value of @ will also remain zero. One,

therefore, can take the limit of Eq. (5.18), which yields Eq. (5.26).
Finally, note that Eqs. (5.18), (5.25), and (5.26) can be

rendered in non-dimensional form merely by substituting p, po and ¥ for

r, ro and B/U.

B. The electron density N.. The density of the electrons in

the repulsive electric field can be obtained from general considera-
tions alone. In the case of a stationary gas of non-interacting
particles in which the particles are subject to an external force, the
MaxwelI-Boltzmannstatisticé derivation using Lagrange multipliers

yields for the distribution function in phase space?®4

8 N -|ﬂ|/kT m % -mv3/2kT , N
d®N = V; e dx dy dz (Eﬁmﬁﬂ e dv, dvy dv,
(5.27)

where Ve is an integral over a volume V

vV, _\[Z];-|ﬂ|/kT dx dy dz (5.28)
v

X, Y, 2, V Vy’ v, are the phase space coordinates and m is the

x)
particular mass.

If one integrates Eq. (5.27) over all Vo Vy’ v s one obtains

N _ N -[]/kT
N_ = dV Ve e . (5.29)

Since Ve includes all space

N _ All particles in space .
Ve— All space =No ’ (5.30)




we have

N = Noe | 21/KT (5.31)

There are, however, certain considerations that need more care-

ful consideration. The integral over all Vo V2 Vs is only allowable

Y
if all values are permitted. |If the field is attractive, then there
will be a cone of angles for the velocity vectors specified by energy
and angular momentum considerations that are allowable. It is impos-

sible for a particle to arrive at this particular point in space with
a velocity vector lying outside this cone of angles. Thus, under
these conditions, the integration of Eq. (5.27) will not yield Eq.
(5.29). In general, the result will be quite complicated and may de-
pend upon the paths of the particles. It is this fact which dictated
the approach in section A of this chapter for the derivation of the
ion density.

When the field is repulsive everywhere in space, then the
allowed cone of velocity vectors fills the whole velocity space
(i.e. all values of Ver Yy v, are permitted) . Thus, for a specu-
larly reflecting, negatively charged body, the electrons will have
a density at any point in space given by Eq. (5.31) if one neglects
their drift velocity.

To allow for the drift of the electron gas relative to the
charged body, transform the coordinate vx\into Ve T us, in Eq. (5.27)

where ug is the drift velocity of the gas relative to the body

N_ _-|8]/kT
e

v
e

dx dy dz ( L )g

6N =
d°N = 2mkT

* expd- 5%7 [(vx - us)2 + vy2 + vza] dvx dvy dvZ .(5.32)
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If we choose a position in space far removed from the charged
body and if the potential energy for the electrons at that point is

g, then we would obtain upon integrating Eq. (5.32) over all allowable

A Vy’ v,
2’ { ! ! 2 2 2
n_= e-lﬂl/kT (_é_T_’l-an) e(..m/2k'|) [(VX - us) + vy + vz ]
_ -|0|/kT
~dvx dvy dvZ = e (5.3%)

If, however, the charged body is very large and nearby and if elec-
trons are specularly reflected off the body, then along the axis of

the body, we can write

I e-lﬂl/kT (5#%?)5'[ké;l‘érm/QkT)(VYZ + Vza) dvy dvz]
u

s
. [2]~ érm/EkT)(Vx - u5)2 dvx] ) (5.3k4)

o
The factor 2 before the integral over Vo is the return factor Q.

The limits on the integral over v, are from - = to ug since
any electron with a higher velocity will run away from the charged
body on the frontside, and on the back side it is prevented from
reaching any point on the frontside due to the presence of the
charged body. If we transform coordinates in Eq. (5.34) so that
W= v o= U we obtain:

n = e-lﬂl/kT (éﬁ(_f)g [l-‘[e{'m/QkT)(vyz + sz) dvy dvz]

(o]
) [2fe"’“‘"2/2” dw] = o= BIZKT (5.35)

~on
We again, have obtained the same simple relation for n_ .

If the electrons are not refliected from the surface of the
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charged body, then the return factor will be Q= 2 only for those
electrons that do not reach the surface of the body; i.e., for
particles of velocity v with g-mvx2 < |ﬂsl. For those that reach the
surface Q= 1. In this case, Eq. (3.34), which already excludes all

particles that do not approach the surface of the body, becomes

u
5. - 2
" = e—m/kT(é}FTﬁ)é [2u[me(m/2kT)(vx u,) av,

-vp .
-f e(-m/sz)(vx - us) dvx] (5.36)

where v, is
]

v = (218, |/m? (5.37)

and B is the potential (energy) of the surface. If we make the

substitution

m

w = = (vx - us) (5.38)

and replace U with v, = U cos 0o (B8p is the initial polar angle

coordinate) in Eq. (5.36), we obtain

(-

2
= e'lﬂl/kT [] _]_ e’w dw ]
JE (v°+vS )Jm/EkT

where m is the mass of the repelled particle (the electronic mass in

n

(5.39)

our case).

A similar expression has been obtained by Lundgren and Chang” .
The validity of Eq. (5.39) is seriously limited, however, since the
potential is assumeq to vary in only one dimension; the expression
is not even valid for an uncharged body, except near the surface.

Equation (5.39) holds only if the radii of curvature of the body and
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of the equipotential surface @ are large compared with the distance
between these two surfaces.
If ug is small compared to the mean velocity of the electrons,

the lower limit on the integral in Eq. (5.39) becomes simply JIDS|/kT.

If in addition, |ﬂsl >> kT, Eq. (5.39) will become

n = o |B/KT ‘5» (5.40)

as before (Eqs. (5.35), (5.33), (5.31)).

For the problems that we will investigate numerically, ug is
small compared with the mean velocity of the electrons and we will
therefore neglect it. There is also some experimental evidence that
|ﬂs| >> kT, at least for some cases. We will, therefore, use Eq. (5.40)
for the electron density. In order to make use of Egq. (5.39) one.
must concentrate on a specific problem. The use of Eq. (5.39) would
greatly increase the computation time and is not essential to the
present purposes.

Al though we obtained Eq. (5.40) from Eq. (5.39) by assuming
that Iﬂsl >> kT, this condition is effectively satisfied even if we
set ﬂs = ﬂe’ the equilibrium value of the potentiél. For ”s = ﬂe
the error in the calculation of n_ - n_ using Eq. (5.40) as compared

+

with usfng Eq. (5.39) will be at most about 1%.



CHAPTER VI

OTHER EQUATIONS FOR FOLLOWING TRAJECTORIES

A. Calculation of new orbit coordinates (p, 8). The solution

of screening problems requires only the Poisson equation and expres-
sions for the ion and electron densities. {In Chapter V we obtained
expressions for the ion and electron densities which allow us to
compute the electric field along test particle trajectories. We must,
now, obtain equations for particle trajectories. |In addition we will
need an expression for the normal to the equipotential surface, and
we must express the Poisson equation in convenient coordinates.

We consider first the question of trajectory calculations.
The trajectory is obtained by ''updating'' the test particle coordinates
as the test particle traces out the field. The current coordinate
position of a particle can be determined by extrapolating its tra-
jectory using the current value of @, the pitch angle of the parti=-
cle's velocity vector. In Fig. (6.1), the parameters for this
extrapolation are indicated. We assume initially that the particle
is located at r;, ©;. An extrapolation of the particle coordinates
by a distance Ae parallel to the velocity vector will bring the par-

ticle to rp, 82. By trigonometric relations, we obtain for rp
ra = [ryZ + (Ae)® - 2r; fe cos a]é (6.1)

and for 95:

62 = 6; + A6 (6.2)
where
sin A8 = L sin & . (6.3)
e .
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If ry >> pe, we can simplify Eq. (6.1) to

ra=ry Jl + (2e/r1)€ - 206 cos a/r; = ry - pAe cos & . (6.4)

The equation for A8, equation (6.3), can be written approximately as

202 5ina X (6.5)
ro

Approximate expressions such as Egs. (6.4) and(6.5) can be used to
reduce the computation time without affecting significantly the ac-
curacy of the calculations. Equations (6.4) and (6.5) can be written
in a nondimensional form by substituting pz for rz, p; for r;, and A

for Ae.

B. Calculation of the particle'spitch angle a. In Fig. (6.2),

we have shown the position of a particle at two points along its
trajectory separated by the incremental angle A8. The value of the
angles between the velocity vectors v, and vz and the respective
radius vectors are @, and Qp. The angle A 7 represents the angular
change from a straight line trajectory (positive in the direction of
increasing @) . In terms of these quantities, we have the geometric

relation
Qo = A7y =0y + A9 . (6.6)

If we consider that the change in B will enter only as a higher order
term, we may consider the equipotential surfaces to be parallel at

these two points. Thus, the components of the velocity vectors normal
to the electric field will not be affected in going from P to Q. We,

therefore, have

vy sin (0 + By) = vz sin (az + By - A6) . (6.7)
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Substituting from Eq. (6.6) for 0z we obtain

-:,-'-; sin (@ + By) = sin (@ + By) cos Ay + cos (¥ + By) sin Ay

X sin (0 +By) + cos (g +B1) Ay . (6.8)

Thus A y becomes
7= (1) tan (ay + B) . (6.9
Substituting from Eq. (6.9) into Eq. (6.6) yields

Qp = 3 + A8 = (1 -%;) tan (ay + By) . (6.10)

Substituting for vy and vz in terms of #,, P> and U, we have
/U
/U ] tan (ay + Bi) . (6.11)

C. Calculation of B from the coordinates of two test particles.

The angle between the normal to the equlpotential surface and the
radius vector plays an important part in the expression for the ion
density and in the second derivative of the potential. In the cal-
culational procedure which we have adopted, the quantity B will be
determined by following a pair of test particles so that their co-
ordinate positions on the same equipotential surface can be used to
evaluate B. It is possible to do this using the same pair of test
particles that are used to obtain A8zp. The equation for B in terms
of the coordinate positions ry, 8, and rz, 82 is immediately obtain-

able from Fig. (6.3).

(ry = ra)
B = arc tan |'21(92 - 91) (6.]2)

where B is positive in the direction shown in Fig. (6.3).



-72-

D. The transformation of the Laplacian. In order to achieve

simplicity in the point by point computations of the electric and
potential fields using Poisson's equation

o2 V= n_-n, (6.13)
let us consider the form of ¥Z @ expressed in terms of local coordi-
nates for which the electric field is parallel to the radius vector.
The geometric relationship of these local coordinates A\, ® © to the
coordinates p, O, B are shown for a constant @ plane in Fig. (6.4).
In addition, we will introduce the coordinates \',®' 8 for which A'
is parallel to N but the center of these coordinates is located at
the center of curvature of the equipotential surface,

Since we will be following several particle trajectories at
the same time and will be incrementing their paths from equipotential
surface to equipotential surface, it will be convenient to express
the electric field vector in terms of local coordinates. For an
appropriate choice of local coordinates (A', ®') the variation in
B along ¥ = constant (in the p, 8 coordinates) will vanish (in the
A', ®' coordinates).

These coordinates will allow us to update the trajectory of
the ions from one point to the next in terms of the coordinate p, ©
and to update the electric and potential fields in the coordinates
N, @ . The choice of the A', @' coordinates makes transformations
between the two systems quite straightforward as shown below.

The Laplacianw®y expressed in terms of the coordinates

N, @ O is

1 9 oV ] d ) Ay ] o2
v2\y=rz$\(;\2g}:—) +}\.2 sin @ 5@(5|n®g@) +>\.2 sinc ® Fﬂg’

(6.14)
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Since we have axial symmetry with respect to #, the last term can be
dropped. According to Fig. (6.4), we can express A in terms of p by:

A p e
sin 8 sin® sin (8 + B) . (6.15)

Thus Eq. (6.14) becomes

2, : s 2 2
v = 2}\;& 4 2sin (8 +B) %‘f+ —z—-@z—zmsin 5 (cot @%+%@¥)

p sin 8

(6.16)

Now consider the variation of the electric field along an
equipotential surface (which by definition is concentric Qith A,
Since the electric field is perpendicular to the equipotential
surface at all points, O¥/0@' = 0O in the neighborhood of the point
and, also, O¥/0@ = 0.

Let us next consider the value of 02V/O@. This of course, is
the rate at which O¥/0® varies as ® increases. Since there is no
"angle'' component of the electric field in the coordinates A, @
(i.e. O¥/0®' = 0), the "angle' component of the electric field in
the coordinates A, ® (i.e, O¥/08) is simply a component of Oy /ON!,
Thus, as shown in Fig. (6.5), the value of 0¥/0® at point 2 is

given by:

Lo iy (89, : (6.17)
Now (Oy/OA')2 is given by

(dw/n)2 = (3w/ant) + sor (S)se! : (6.18)
so that Eq. (6.17) gives

o sin oy (B + o7 (55 0] . (6.19)

Since Oy/d® = O at point 1, we obtain for d%y/@®=



-7l

%;'g‘ = (_\y_) [(%}\L')l + a(;. T 8 ] %= A(g"{—.)l %.(6.20)

To obtain /8 consider the triangle ABC in Fig. (6.5). We have:

(A = A') sin B® = A\' sin By (6.21)
so that

o) A

EZ@=,\—-' 1 : (6.22)

To obtain M/A', we see from Fig. (6.6) that A' can be expressed in

terms of p by

AMAB' cos B = p/8 . (6.23)
From Fig. (6.4) we see that @ = 6 + B; a variation along an equi-

potential surface gives

M =LAB + 19 . (6.24)
Substituting Eq. (6.24) forA @ and Eq. (6.15) for p into Eq. (6.25)

we have

A__sin 8 cospB 08
= em(e+n (' *he’ : (6.25)

Since the variations in Eq. (6.23) and (6.24) are along an equipoten-

tial surface, Eq. (6.25) becomes in the limit as A8 =» O
A__sin8cosB
A" T sin (8 + B) (v + (5-) ) (6.26)

If we now use Eq. (6.26) for A/A' in Eq. (6.22) and substitute the
resulting expression into Eq. (6.20) we obtain for 2y /O

2 .
S N CE A IRl LB (627

Since the coordinates A and A' are always parallel, we have that

gL - (6.28)



and thus

5@3 {::; ?;2565 [+ 55 - 1}5*1 . (6.29)

If we substitute Eq. (6.29) for 0%y/d@° into Eq. (6.16), we obtain

V2 = ng sin (8 + B) { sin 8 cos E [( 5%)W + ]]} g&

P sin @ sin (0 + B)
(6.30)
It must be remembered that Eq. (6.30) does not express‘]aw in

terms of coordinates moving with the particles, but merely rebresents
a geometric relationship between the coordinates p, @ and A, @
which allows us to deal with the total electric field intensity (actu-
ally the electric force on a charge) Oy/ON rather than the components
dY/dp and JY/pd8. Since the electric field must be invariant under
coordinate transformations, it is immaterial what coordinates are
chosen; Eq. (6.30) is employed only because it expressesy2y in the
most convenient terms for our purposes.

Equation (6.30) will be used for '"'updating'' the electric field.
Because of the particular choice of coordinates used to calculate
‘Vaw, the electric field will lie along the radius vector. The updat-

ing equation is then, simply,

(o= (&Y, + (EH an q (6.31)



CHAPTER VI

GROWTH OF ERRORS IN NUMERICAL CALCULATIONS

Al though some special cases of the screening problem can be
treated by analytical means, complete solutions can be obtained only
by recourse to digital computers, as already mentioned. However, the
numerical calculations of a solution is of practical necessity
limited in accuracy. Since single precision floating point calcula-
tions on an IBM 7090, as employed in our calculations, use 27 bit
mantissas and double precision 54 bits; each single precision cal-
culation will involve an error in the 9th digit and each double
precision calculation will involve an error in the 17th digit. Each
step in the integration of the screening equations (see Chapters V
and V1) involves the calculation of various quantities in terms of
their values on the previous step. |t should appear obvious that
a small error introduced early in the trajectory calculations can
become quite significant at a later point. There exists also the
possibility that the error will not become important.

It is quite possible to calculate whether the error involved
in updating a particula; quantity will grow or be removed; whether
the series of such errors is divergent or convergent. The procedure
for deriving the criterion is simpie but may require considerable
effort for involved equafions, such as we have. In most cases it
is simplest merely to experiment with various parameters such as the
step size and or particle separation, to see if the results depend
upon their value. In some cases, however, such a trial and error
procedure is not satisfactory due to the large amount of computa -
tion time that may be involved. There is, also, the danger that the

~T76-
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erratic results obtained from the computations arise from other short=~
comings. For these reasons, a formulation of the behavior of the
errors will be obtained here.

The procedure involved is simply to assume that in the step-

by-step calculations a variable X is updated according to the relation

Xoew = Xo1a ¥ T (X514 : (7.2)

We then assume that the true value of X is replaced by'f (which in-

cludes an error 8)

X=X+ 8 (7.2)

where & is the round-off error in the value of X. We thus findvthat

xnew * 6new - Xold * aold *f (xold * Sold) (7.3)

= Xo1g * Oora v (Xgyg) * (X9 Bgpq - (T24)

Thus for & we have,

5new = 6old [1+ ' (X)] . (7.5)

Equation (7.5) shows that if |1 + f' (X)| is less than one, then any
error 8. introduced at any point in the calculations will be removed
exponentially; if it is greater than one, the error will grow exponent-
ially. Thus, the convergence of the sgries of errors can be effected
only by changing the values of the parameters in f' (X).

Early attempts at obtaining numerical solutions in the problem
of the screening of a rapidly moving charged body showed that the an-
gle B between the normal to the equipotential surface and the radius
vector is highly unstable for small values of 830, the initial angle
for the first particle (i.e., néar the axis). (The reader should

remember that the field is traced using four test particles divided
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into pairs; each pair is used to obtain a value of B on the equipo~
tential surface. The resulting pair of values for B is used to
obtain 0B/08.)

The equation for B for the first two particles is, from

Eq. (6.12),

P12 = Poo 6
P2z (822 - 812) (7.6)

B = arc tan
where the first subscript on P and 8 specifies~thécpartidle. and the.second
subscript specifies whether the value of p and 8 is for the current
step (2) or the last step (1), corresponding to the subscripts new

and old in Egs. (7.1) through (7.5). For small values of B, Eq. (7.6)

can be approximated by

= (P12 _
B ‘ge-l';(pzz 1) F7~7)

where 50;,o = (822 - 8;2), the subscript 12 on 88 referring to the
first pair of particles (used to calculate B) on the current step.

If we write

P12 = P11 + Loy ’ (7.8)

pez = p21 + Loz (7.9
and .
86,2 = 58;; + A056; ’ (7.10)

we can write for B, where B is small

Bnew = Bold + 8 (7.11)

where

- fo1 _parfp2, 961 (| _pur
28 = o oo 9-11792p21 t 5oy U " pad)] : ;7.12)



If AB is defined to be f(B)

o= f(B) p (7.13)
then Eq. (7.11) will take the form of Eq. (7.1). We thus can write

according to Eq. (7.5)

anew=so]d.[1 + £1(B)] . (7.14)
Thus,lwe require the guantity fr(R). Let us write, therefore

f(g) = fy - fa + f3 (7.19)
where

f A" ] W .16)

18013 p21 (7.16)

fo = .

2 = 587, paid o0 (7.17)

1 £f11
fa = 1 - e . .18
3 W( 021) £50, (7.18)

Here the quantities Apj, Apz and ABB8; are expressed in terms of the
quantities from step (1) (i.e., the old values). From Eq. (6.4), we

can write for Apy

Lpy = = M)y cos Og2 (7.19

so that Eq. (7.16) for f;, becomes

f. = - S cos M2 . .20
1 5833 p22 ’ F7 )
therefore,

f1| = QI] sin a]2 5(1]2 ) (7'2])

5033 p21 oB

From Eq. (6.11) for @ and Eq. (6.5) for A8 we have for Q)2

Qyo = Oy, + o sin sy . §—T§ﬂ;—gy] tan (Qpy + By) (7.22)

pi2
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so that

Sz . . o (7.23)

oB 2 (1 +y) cos® (a1 + B1) )
and Eq. (7.21) for f,' becomes:

thl sin oy

fa! 2 (1 +vy) COSS—(Otu + B1) 5611 p2a (7.24)
For fo we have, using Eq. (6.4) to obtain Apz:

fo = - L1 viz' M, cos (g + 83) cos ozl . (7.25)

8811 P21 Vao' cOs (azz + Bi1)

Thus, for the derivative of fz with respect to B, we can write

| = - L1 m]l COS (ale + Bl) cOoS (x22 a .
f2 811 P21 {Wag' cos (Qpp + By) oB (Vi2')

\Ula cOS (alg + B]) COS Opp O a
" ¥22'F cos (g2 + By)

(¢22)

_Vag' cos gz sin (ayp + B3) o2
Va2' cos (Qzz + B1) oB

_Vag' cos (32 + B,)
Vez' cos (Opp + By)

[cos (Qpz + B;) sin Gzp

- cos Opp sin (Qzz + By) ] ér(gaa

' cos oz22 .
%22 cos® (Qop + By) [cos (G2 + By) sin (Czz + B,y)

- cos (Qgp + By) sin (Qo + 61)]} . (7.26)

From the equation for updating ¥', Eq. (6.31), we obtain

[£os (013 *+B3)

% (Vi2') = {n+11 [tan (@31 + 1) - tan g,;] + 511 Sin 6811

P11

- sin By (1 +8") Wll} My cos (Qpy + By) +{”,11 - N

P11 sin 911 Pry

_(sin (@) +B1) | 05 By () 4 gy wn'} My sin (Qyy + By)

(7.27)
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and

3‘( V22! ) = {n 21 [tan (ap; + By) - tan 31] [cos (857 + B3)

pz1 Sin 623

sin By () 4 g1)] 4,21'} Mz cos (Gzy + Bi)

021
oo e -l e
S ] wzl}ma sin (02y + 1) . (7.28)
We also have corresponding to Eq. (7.23) for 0%;2/0B
3%22"2(“40 ?‘)Lsz(a.?l"'ﬁl) ' (7.29)

Thus for fz' we obtain

'z - cos (Q1p + By) cos Opp
f2 5611 P21 {\lfza' cos (Ogz + B1) [n+11 (tan (ayy + B1)

- tan 51) 81 cos (G11 + B1) - n,21 (tan (0zy + Bi)

- tan 51) ( ) Mz cos (Qgy + B1) + ;Zi (Sieglg-:lﬁl)

* My cos (g + Bi) vna' - (m‘) cos (62; + P) M2

Voz'’ p21 sin 623

. cos (a21 + 51) Vo' + ¥y ml sin (03 + 51} - (}Wlezi-;)

" 2" Mz sin (0zy + B+ (lJ.L)

_ cos Opp sin (0 ¥ By) & (31’..12__')
CcoOs ((122 + 51)2 (] + \E} (:OS2 (all + Bl) 1‘[22'
. cos (QGhp + By)
cos (Qz2 + Ba)

[cos (Gzz + Ba)sin Qpz - cO5 Qa2

. - M ‘
©sin (G2 + B1)] 7T 54) cos? (0ay * Bo) (sz')
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[0/
) 2222 %;2 + B3) [cos (a2 + B1) sin (0z2 + By)

- cos (Qzz * B1) sin (02 + B1) ] }’ . (7.30)
Consider typical values for the variables. Take 2, 6, %6, V',
¥, Q@ of the order of magnitude of 1072, p ® 1, ¥ =X 10 ¢ and finally

B less than . We find that the only large terms in fz':are:

_ cos (Qy + cos cos (8,7 * By)
86811 p21° Vez2' cos (Qpz + By)  "p1i sin B33

fg' =

Yip'y cos (827 * B1)
Yo2'’ pz2y sin 623

.+ My cos (Qyy * Bi) Vip' - (

M2 cos (2 * Bi) V2l . (7.31)
We also find that f,' as expressed in Eq. (7.24) is small compared to

fo' in this range of values for the variables. Considering fa we

have

f11 My sin Xp 4 sin Qpa Iig'
- ) [" ( ]
P21 P12 pz2 V22

fa = ““l—‘z (1
(5611)

M,y cos (et By)
. . .32
cos (Qgz * B1) - ]_ (7.32)
This expression is very similar to that for fo. As we have seen,
those terms involving the derivation of (32 and Gzz, with respect

to B are not as important as those for ¥12' and V2z'. Therefore, we

can write for fz', approximately:

P (1 - piyy . cos (Ao + By) sin Opp
3 (%61,) p21 p22 Vo2' cos (Ozz2 + Bi)

[£o2 (elltﬁll‘ﬁhl cos (Qyy + B1) Vi1 - (YJE:Q

P11 Sin 013 Vo2

. 03 (81t Ba) s cos (g + B1) Ve '] . (7.33)
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Thus, including only the largest terms:

fl(ﬁ) = w + Bl) [(l ",Jpli/pzl) Slin a22

8011 V22' cos (Opp + B1)  pa2z 0813

613 *83)
+ cos ool * [COS (.11 cos (& +
g;iz 22 511 Sin 011 A 5% (11 * B1)

V12" cos (8 + B3)

. - : cos (Qgzq + 1]
Vi1 VY22' p21 sin 623 Me (23 +B1) Va1
(7.34)
It is the sign and magnitude of this term that will ordinarily deter-

mine how fast B will accumulate errors. A further approximatjon in
f'(B) in which we ignore the (1 - p331/p23) sin Qoz/p22 56;; term
compared with py3 cos aga/pzlz, approximate cos (@ + B) ® 1 to first

order, take Vyj;po' = ¥2;' = V¥22', and set p3; = p2y gives

frp) =dam)l (1, (7.35)
, 58313 p

sin @337 sin 623

From Eq. (7.5), we have

_ any 2 1 ) 1
Bew = Pold (1 * 50,057 Lsin oms = 5T (8, # 50,0 (7-36)
If we assume that 8, and 58, vary slowly compared to p, as will be

the case for small angles, and if we write fp = Ah,;, then

a8 _ou ] _ 1 d
& 8@y; sin 637 sin' (8;; + 6911)] Sg' - (7.37)

Integrating, we obtain

= Ly ] - ' 1L
® = %o exp [5911 (sLn 812 sin (85 * 5911)) (D Do)] (7.38)
or approximately
5 = By exp [gﬂ"z (-I- - ]—)] . (7.39)
b 5 N Po A

Thus, we see that the error & will grow exponentially. For given po
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and p , i.'e., a given distance over which we require a valid solution,
we can make & small by making /M, small, 6;, large or 8o small. To
make /M, smaller will increase proportionately the computing time;
increasing 833,0f course, will exclude information regarding the field
near the axis of symmetry. Making %o smaller_is equivalent to requir-
ing greater precision in the cal;ulations, for example by means of

"double precision'' calculations. For larger values of po, the problem

becomes less acute.



CHAPTER Vit
RESULTS OF THE NUMERICAL SOLUTION FOR THE SCREENING OF

A RAPIDLY MOVING CHARGED BODY

A. The problems treated. In Chapters V and VI we have ob-

tained the equations necessary for a numerical solution of the
screening problem. In the Poisson equation, Eq. (6.13), we will use
Eq. (5.18) for the ion density n_ in the monoenergetic case and Eq.
(5.25) in the Maxwellian velocity distribution case, and Eq. (5.31)
for the electron density n_. The Laplacian operator is re-expressed
in the form of Eq. (6.30). Equations (6.2), (6.4), (6.5) and (6.11)
will be used to follow the trajectory of the particles and Eq. (6.12)
to calculate B, the angle between the radius vector and the normal

to the equipotential surface. We will write the potential in the non-

dimensional form ¥ = @B/U and the radius as p = r/h where

h = JU/MTeENQ (in cgs units)
= JeoU/eZNo (in MKS units) . (8.1)

Let us restate here the limitations on the use of the above
equations for the solution of screening problems for rapidly moving
bodies, First of all, the shape of the body depends on the choice
of the boundary conditions. If practical considerations permit (i.e.,
available time, etc.) one can obtain a solution for any axially
symmetric shape by making successive approximations or by trial and
error procedures. However, this should not be confused with an
approach using successive iterations of the potential field (as
employed by Davis and Harris®) .

In the solutions calculated here (see beiow) no effort has

-85-



-86-

been made to obtain solutions for a body of a specific shape and sur-
face potential. The problems treated have been chosen for their value
in exemplifying the procedure and yielding a general understanding of
the nature of the screening. In addition, no effort has been made here
to introduce the effects of intersecting trajectories (such as ions
intersecting trajectories from the lower half plane when they cross
the axis). Their neglect, however, is not an inherent Iimitation

of the method, but does require more elaborate calculational tech-
niques (see Chapter IV); in addition, for bodies large compared to

a Debye length the ion density is so low behind the body that the
neglect of intersecting trajectories is unimportant.

With these reservatiqns let us now consider a few specific
problems. In' the case of a spherically symmetric problem of a
stationary sphere, we incorporate the ambient density No and temper-
ature T in the potential and radius variables by using a nondimen-
sional radius. By solving the equations for various values of pg and of
Vo we obtained a set of solutions that were applicable to any
specific value of Ng and T. In the case of a moving body we must
élso specjfy kT/U, the ratio of the thermal energy of the electrons
to the kinetic energy of the ions. In the numerical calculation
given here let us set kT/U = 0.031812, a value corresponding to an
electron-temperature of 1500° K and a relative velocity of Tkm/sec
between the charged body and a plasma of singly ionized oxygen.

These calculations thus correspond to the motion of a satellite
through the earth's upper atmosphere.

As in the screening of a stationary sphere (Chapter | and )

we must begin at a distance from the charged body po with a potential
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Yo. If po is sufficiently large, we can establish with some cer-
tainty the boundary conditions. We will use here for the boundary
a hemisphere axially symmetric and opening to the rear on which we
have for the potential VYo = 0.001; we will take, variously, po = 5,
10, 20 for the radius of this boundary surface. For the value of '

on the béundary surface we again use Eq. (2.30).

B. Results of the numerical calculations and general observa-

tions. In Figs. (8.1), (8.2), and (8.3) we show plots of trajectories
and equipotential surfaces where pg= 5, 10, 20, respectively.
Figures (8.4), (8.5) and (8.6) show the corresponding equidensity
curves. In these calculations we have assumed the ions to be with-
out any significant thermal motions so that the velocity vector of
each ion will be parallel to the axis of symmetry.

The trajectories and equipotential curves shown in Figs. (8.1),
(8.2), and (8.3) are superficially quite what might be expected,
except that the trajectories turn more directly toward the body and
the sheath is thicker than might have been thought. The slow
spatial variation of the potential shows that the Debye length is
not a satisfactory indicator of the sheath thickness. The tail-like
appearance of the equipotential curves behind the body is due
primarily to the convergence of ions toward the axis. We will show

1

later that a Maxwellian velocity distribution will remove these tail -

like areas except for small bodies.

The most interesting information is shown in the equidensity
curves, Figs. (8.4), (8.5), and (8.6). We find that there is no
rise in fhe density as particles enter the field but rather, a drop

in the density. This drop in ion density results from the acceleration
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of the particles by the electric field. Near the axis on the front
of the body the density drops steadily as the ions approach the body.
Slightly further from the front there is a trough in the equidensity
surface caused by the convergence of the ion trajectories toward the
origin. On the side of the body the density becomes quite low giving
a wide, low density trough. Behind this position.lies .a point of minimum
density; the minimum, therefore, does not lie directly behind the
body. Near the axis behind the body the density becomes quite large,
due to the convergence of the trajectories toward the axis. This
high density, of course, arises from the neglect of the ions' thermal
motion.

Figures (8.7), (8.8), and (8.9) give the trajectories and equi-
potential curves obtained using a Maxwellian velocity distribution
for the ambient ions; all other parameters are the same as in Figs.
(8.1) through (8.6). These calculations assume that the ion tempera-
ture equals the electron temperature in the ambient plasma, although
such an assumption is not necessary. The resulting equipotential
surfaces are much more nearly spherical.

Figures (8.10), (8.11), and (8.12) show the equidensity sur=-
faces corresponding respectively, to the trajectory and equipotential
curves of Fig. (8.7), (8.8), and (8.9). The two most interesting
changes are: the trough in the equidensity surface extends across
the axis behind the body, with the trough nearly encircling the body,
and the density of particles crossing the axis behind the body no
longer reaches the unduly high values found in Figs. (8.4), (8.5),
and (8.6). Nevertheless, there is a considerable concentration for

small bodies (of about one Debye length) with large potentials, as



-89-

shown in Fig. (8.10). For large bodies the density along the axis
is small. This shows that the intersection of trajectories becomes
fairly unimportant for large bodies.

18show some

The equidensity curves computed by Davis and Harris
similarity with our results. They show a large concentration of ions
near the axis (the ions are cold) and a depression in the equidensity
surféce behind and to the side of the body. However, in their work
there is no drop in ion density along the front of the body but
rather a slight increase in density before the density drops. Also,
there is no trough in the equidensity surface although it must exist.
Nevertheless, an iterative method of solution using a large number of
trajectories and a good first approximation to the potential might
prove quite satisfactory. It appears, however, that one would need
a much finer mesh than the 4kl density points used by Davis and Harris
to calculate the electric field.

In addition to the previous graphical displays of our data
(Figs. (8.1) through (8.12)) it is useful to plot the radial varia-
tion in W and n_ for several different directions from the body.

Plots of this kind are shown in Figs. (8.13) through (8.24). Figures
(8.13), (8.14), and (8.15) show the variation of the potential start-
ing at a value equal to the maximum potential shown in the correspond-
ing Figs. (8.1), (8.2), and (8.3). The density variations plotted in
this manner are shown in Figs. (8.16), (8.17), and (8.18) and corre-
spond to Figs. (8.4), (8.5), and (8.6). Figures (8.13) through (8.18)
are for ions with no thermal motion. For the case where the ioné

have a Maxwellian velocity distribution superimposed on their velocity

toward the charged body, we show the radial variations in ¥ and n, in
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Figs. (8.19) through (8.24) corresponding to the curves shown in Figs.
(8.7) through (8.12), respectively.

Most all of the particle trajectories are shown in Figs. (8.1),
(8.2), (8.3) and (8.7), (8.8), (8.9) are spiral rather than pseudo-
hyperbolic. This fact is quite consistent with the electric fields
that we obtain. Notice that Figs. (8.13). (8.14), (8.15), (8.19),
(8.20), and (8.21) show a radical variation of the potential ¥ with
an exponent n > 2 (where y = Kp-n) everywhere except close to the
axis behind the body. As we stated in Chapter 1], particle trajec-
tories are in general spirals, if the exponent n > 2 in a central
force field. (In the present case, of course, the fields only

approximate central force fields over certain regions of space.)



CHAPTER IX

PARTICLE ACCRETION AND DRAG ON A RAPIDLY MOVING -CHARGED BODY

A. The ion and electron currents to the surface of a rapidly

moving charged body. The numerical solution of the screening problem
‘for a rapidly moving charged body‘(see Chapter VIl1) yields the data
necessary for the calculation of the ion current to the surface of
charged bodies and the drag enAthe bodies. The calculation of the
ion current to the surface of the charged body requires merely that
we integrate the particle flux to the surface and multiply by the
electronic charge on the individual ions of the plasma. The flux

per unit area is given by the den;ity at the surface multiplied by
the velocity component nermal to the surface, |If we assume the
surface of the body to be an equipotential surface (as it will be

if it is a conductor), then the ion current I, to the body is

+
given by

T

- 2 sin 6
i, 2neNo~/;+vr cos (a0 + B) | ~os Bl de (9.1)
: ()

where 2mr? Isin e de/cos_B| is the element of area supported by d8, and
v cos (a + B) is the component of the velocity vector normal to the
surface element as shown in Fig. (9.1). Also, e is the electronic

charge, No is the ambient ion density, n_ is the ratio of the ion

+
denSIty at the point r, 8 to the amblent denS|ty, v is the ion velocity
at this point on the surface, o is the angle between the velocity vector
and the radius vector, and B is the angle between the radius vector

and the normal to fhe'edufpotehtial surface.

If uis fhe drift velocity‘between the body and the ambient

lasma, ener considerations give
P ) Y
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v=uJl +¥ (9.2)
where ¥ = 0/U; U = & mu®.
Using Eq. (9.2) in Eq. (9.1) and writing p = r/h, where h is

the Debye length expressed in terms of U (see Eq.(9.20)) we have

T

I, = 21reN°”h2f +° vi Ism e| cos (a + B) de - (9.3)

cos B

Let us re-express Eq. (9.3) in terms of the current intersecting an
uncharged area having a geometric cross section, 7rZ, equal to that

of ‘the body:

i, = I+/7reNouh2p92 (9.4)

where pg is the distance from the axis of symmetry of the body to the
furthest - point on the body measured in Debye lengths. Substituting

for l, from Eq. (9.3) in Eq. (9.4) gives:

='—2’f+p J+ ¥ |z(')2§ cos (o + B) dé - (9.5)

Figure (9.2) shows the results of integrating Eq. (9.5) using
the numerical solutions of the screening problem given in Chapter VIII.
Only those screening calculations that include the first order correc-
tion for the Maxwellian velocity distribution have been used to obtain
the results of Fig. (9.2). It should be noted that the parameter
U/KT = 31.43 for the family of curves in Fig. (9.2); however,
except for small values of ¥ (S 0.03) the results should not be

strongly dependent on the value of U/KT.

B. The draq on the charged body. We wish naw to obtain the

drag characteristics for a charged body embedded in a plasma and

moving rapidly with respect to the ions of the plasma. It is assumed
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that there is no magnetic field pervading the plasma, that the sur-
face of the body is a conductor or is otherwise made to conform to
an equipotential surface, and that the electric field and the space
charge distribution is in an equilibrium configuration.

There are two ways in which one can calculate the drag on the
charged body, given the solution to the screening problem. If we
completely enclose the charged body in a boundary surface which is
remote from the electric field of the body, then, all momentum trans-
fer must appear as the difference between the momentum of the particles
entering the boundary and of the particles leaving the boundary. The
drag force is then given as the rate at which momentum enters the
boundary minus the rate at which it leaves. The difficulty with this
approach is that the solution to the problem that we have may not
extend sufficiently far into the wake (or other areas).

~We .may, however, have data that is complete.at the surface
of the charged body. This allows us to use the second method
which employs a calculation of the forces acting directly at the sur-
face of the body. The forces acting directly on a surface element
of the body are the impact forces, given by fhe rate of momentum
transfer on the surface element, and the electrostatic forces given
by the appropriate component of the Maxwell stress tensor. Let
us consider first the impact forces.

The impact force on the body arises from the collision of the
ions with the body. These ions will, for the most part, experience
Auger neutralization on impact and may then recoil elastically or
remain attached to the surface either temporarily or permanently.

We will consider the two extreme cases; completely elastic impact
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and recoil resulting in a force F on the body, or completely inelastic
impact resulting in a force F' on the body. The differential force dF
on an axially symmetric surface element subtended by dé (see Fig.

(9.1)) will be given by the product

dF = (surface element area) - (particle flux through the com-
ponent of the surface element normal to v) . ( momentum
transferred per impact) - (component of force parallel
to axis) . (9.6)

For completely elastic impacts Eq. (9.6) gives

- 2 ysin @ . .
dF = 2rr |cos B| de + N_ v cos (@ +B) * 2mv cos (a + B)
- cos (8 + B)

= bimv@ N, 2 210 gl cos (L + B) cos (8 +8) d@  (9.7)

where m and v are the mass and velocity of the ion and N+ is the ion
density at the point r, © as shown in Fig. (9.1). For completely

inelastic impacts Eq. (9.6) gives

Loz (S0 8 Lo Sy - _
dF 2mr2 | os B| de + N_v cos (x+B) - mv - cos (8 - )
= 2 2 sin @ _
2mnyv lcos BI cos (a0 + B) cos (8 -a) do . (9.8)
Let us express
n+ = N+/No (9-9)

where No is the ambient density and write for the velocity of the
ions at the surface v=u J1 + ¥ (see Eq. (9.2)). Substituting

qs. (9.9) and (9.2) into Eqs. (9.7) and (9.8) we obtain

sin @

dF = 4 No mu® (1 + V) n, r2 Icos 5

| cos® (o + B) cos (@ + B)de
(9.10)
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and

2 |sin 0

s Bl cos (¢ + B) cos (8 - )de -

dF' = 27 No mu® (1 + V) n,r

(9.11)

If we divide dF and dF' by the drag force Fg due to inelastic impacts

acting on the uncharged body, that is, the geometric drag
Fg = ﬁthgg No muZ (9.12)

and.defin: dD to be dF/Fg and dD' to be dF'/Fg, we obtain:

2 ‘
dD = hn+ (E;) (1 + V) Izég gl cos® (@ + B) cos (@ + B) de

(9.13)

2
do' = 2n, (&9 (1 +¥) ls'" 8| cos (a + B) cos (8 - @) de
pg cos B
(9.14)
Let us consider, now, the Maxwell stress tensor acting at the
surface of the charged conductor. In the present case no dielectrics
are present since the problem has been reduced to an electrostatic

problem containing a space charge distribution only. The Maxwell

stress tensor % is, therefore, (MKS units)
1
oaB=eoEaEB-2e:06aBE7E7 a Bp=1, 2, 3 . (9.15)

When the surface is a negatively charged equipotential surface,

Eq. (9.15) becomes
o= -1 eo E2 (9.16)

along the outward normal. Expressing Eq. (9.16) in terms of ¥' we

obtain

o= -teo (v : (9.17)
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Taking the component of o that is parallel to the axis of
symmetry of the charged body (see Fig. (9.1)) and multiplying by
the surface element supported by the angle d® we have for the

electrostatic force on the element of area

2 |S|n e

ot Bl cos (@ + B) de ' . (9.18)

1]
dF = -Teo (; pv')

Dividing Eq. (9.18) by Eq. (9.12) we have

- . —f0 UPW)
dDE No mu® ehO l

sin 8
cos B'

cos (8 + B) de .(9.19)

Now h, the Debye length, is expressed in terms of the ambient energy

of the ions relative to the charged body: U = % mu? and is given by

h = (MKS units) .(9.20)

Substituting for h in Eq. (9.19) from (9.20) we obtain

ao, = - & (§L |;g 300 8 (o5 (@ + B) do - (9.21)

If we express Eqs. (9.13), (9.14) and (9.21) in integral form

we obtain:

o-;%f n,e? (1 +¥) |2L28] cos? (o +B) cos (0 + ) db

cos B
(9.22)
D' = 522\/‘ n+p2 (1 + ¥) |Z;2 gl cos (O + B) cos (8 - @) dé
(9.23)
O = - 2-91;;2];(”')2 s gl cos (8 +B) de . (9.24)

Finally, the total (nondimensional) drag forces DT for completely

elastic impacts and DT' for completely inelastic impacts will be



given by the sums
0, = D + D (9.25)
and

DT' = D' + D . (9.26)

Figure (9.3) shows a plot of the drag characteristics that we obtain

using the data of Chapter VIil. For clarity, we have plotted the

T

radius pg as the parameter. It is at first quite startling to find

quantities DT p92 and D_' p92 against (-y), with the cross section

that DT can become negative as Iw{ increases. The explanation is not
difficult to discover, however,

Consider a test particle of mass m moving with velocity u = Tkm/
sec toward a body charged to a potential V = 24k, The particle has a
velocity v = u /TT;—VA (see Eq. (9.2)) or 35km/sec upon reaching the
surface. Since the test particle is Auger neutralized and (by assump-
tion) specularly reflected at the surfaée, it will not be decelerated
as it moves away from the body. If the particle moves away from the

body in the rearward direction (v || u), then the net momentum trans-

fer &P will be

NP = m (Tkm/sec - 35km/sec)

= - m + 28kn/sec (9.27)
thereby increasing the momentum of the body. For the body as alwhole
there will only be a net increase in the momentum of the body if there
are more particles reflected in the rearward direction than in the
forward direction. |f the ''sheath thickness'" s is sufficiently
large so that s2 - pga > pgz’ then we might expect to find a greater
flux of particles scattering rearwards than forwards. Under such con-

ditions a negative drag becomes possible.
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Since the geometry of the body is important in determining
both the shape of the equipotential surfaces and the reflection angles
of the particles, it follows that the geometry is also quite important
in determining the drag. We can probably conclude, therefore, that
needle-shaped, cylindrical or cone-shaped (with a small apex angle)
bodies moving parallel to their longest dimension are the shapes
most likely to satisfy the ( approximate) condition s% >> 2p92 and
to favor rearward reflections. Of course, the energy source that a
negative drag demands must be provided by whatever mechanism is used
to maintain the high negative potential. In addition, as the velocity
of the body increases, U = % mu® becomes larger, making |W| and |DT|
smaller. Thus a body experiencing negative drag will approach a termi-
nal velocity that will make the drag zero.

The curves in Fig. (9.3) for the product DT' pgz (DT' being
the completely inelastic drag as given by Eqs. (9.23), (9.24), and
(9.26)) increase monotonically with the potential. These curves show
a marked similarity to the current-voltage characteristic curves for
stationary spheres, Fig. (2.17) and for moving bodies, Fig. (9.2).
It is reasonable to expect that we can obtain an a posteriori equa-
tion for DT' similar to the one for T, using Egs. (2.70) and (2.75).

In addition to the obvious complications arising for the case of a
rapidly moving body, we must consider the effect of the energy dif-
ference between the ions and electrons. Since the electron energy
kT is ordinarily small compared to U, there will be a region of high
electric field beginning at the edge of the ion sheath that arises
from the rapid change in the electron density. This latter region

is the electron-dominated region of the ion sheath. If o and o
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are the nondimensional thicknesses of the ion and electron-dominated
regions of the ion sheath, we have for the total sheath o, adapting

Eq. (2-75))

o= 0, + 0
i e

- 0.85 03 v 2+ 0.85 (o) + 0% v 0P ; (929

)

weff is the value of ¥ where the density variation of the electrons
becomes less important than the ion density variation (moving toward

the body's surface). Now for the electrons

el lv|u/kT ‘ (9.29)

n

Assume the ion density to vary approximately as

n,=e I¥] for |¥] = Wogel (9.30)

in the electron dominated region,we obtain weff by requiring

dn dn
Wt =0 for [¥] = vere : (9:31)

Substituting Eqs. (9.29) and (9.30) into Eq. (9.31), we obtain for Vegs

_ 4n (U/KT
Vefr = (Tﬁ-ﬁ/—k% : (9.32)

In the present case we have taken U/KT = 31.43 which gives Vo =

0.1063.
Adapting Eq. (2.70), we can write
(- ' 2
T+ DT pg
p.2 vl
=02 [1 - (1 = pgz/az) exp (- ag—:7;1ﬂ] (9.33)
9
where
O!=pg+0 F (9.34)
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o being given by Eqs. (9.28) and (9.32). The agreement of Eq. (9.33)
with the curves in Fig. (9.3) is fairly good considering the obvious

limitations of both the equation and of the curves which obtains from
prolate spheroidal bodies. It is also found that Eq. (9.33) is in

fair agreement with the curves in Fig. (9.2) if we write

2

g (9.35)

1 e
T, iy P
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